
Compiler Design

i

Compiler Design

i

About the Tutorial

A compiler translates the codes written in one language to some other language without

changing the meaning of the program. It is also expected that a compiler should make the

target code efficient and optimized in terms of time and space.

Compiler design principles provide an in-depth view of translation and optimization process.

Compiler design covers basic translation mechanisms and error detection & recovery. It

includes lexical, syntax, and semantic analysis as front end, and code generation and

optimization as back-end.

Audience

This tutorial is designed for students interested in learning the basic principles of compilers.

Enthusiastic readers who would like to know more about compilers and those who wish to

design a compiler themselves may start from here.

Prerequisites

This tutorial requires no prior knowledge of compiler design but requires a basic understanding

of at least one programming language such as C, Java, etc. It would be an additional

advantage if you have had prior exposure to Assembly Programming.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent of

the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website

or its contents including this tutorial. If you discover any errors on our website or in this

tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Compiler Design

ii

Table of Contents

About the Tutorial ·· i

Audience ·· i

Prerequisites ·· i

Copyright & Disclaimer ··· i

Table of Contents ·· ii

1. COMPILER DESIGN – OVERVIEW ··· 1

Language Processing System ··· 1
Preprocessor ·· 2
Interpreter ··· 2
Assembler ·· 2
Linker ··· 2
Loader ·· 3
Cross-compiler ··· 3
Source-to-source Compiler ·· 3

2. COMPILER DESIGN –ARCHITECTURE ··· 4
Analysis Phase ·· 4
Synthesis Phase·· 4

3. COMPILER DESIGN – PHASES OF COMPILER ·· 5
Lexical Analysis ·· 6
Syntax Analysis··· 6
Semantic Analysis ·· 6
Intermediate Code Generation ·· 6
Code Optimization ··· 6
Code Generation ·· 6
Symbol Table·· 7

4. COMPILER DESIGN – LEXICAL ANALYSIS ·· 8

Tokens ··· 8

Specifications of Tokens ·· 9
Alphabets ··· 9
Strings ·· 9
Special Symbols ··· 9
Language ·· 10

5. COMPILER DESIGN – REGULAR EXPRESSIONS ·· 11

Compiler Design

iii

Operations ··· 11
Notations ··· 11
Precedence and Associativity ·· 12

6. COMPILER DESIGN – FINITE AUTOMATA ··· 13

Finite Automata Construction ··· 13

Longest Match Rule ··· 14

7. COMPILER DESIGN – SYNTAX ANALYSIS ··· 15

Context-Free Grammar ·· 15

Syntax Analyzers ··· 16

Derivation ··· 17
Left-most Derivation ·· 17
Right-most Derivation ·· 17

Parse Tree ··· 18
Ambiguity ··· 21
Associativity ··· 21
Precedence ·· 22
Left Recursion ·· 22
Left Factoring ··· 24

First and Follow Sets ·· 25
First Set ·· 25
Follow Set ·· 26

Limitations of Syntax Analyzers ··· 26

8. COMPILER DESIGN – TYPES OF PARSING ··· 27

Top-down Parsing ·· 27

Bottom-up Parsing··· 27

9. COMPILER DESIGN – TOP-DOWN PARSING ··· 29
Recursive Descent Parsing ··· 29
Back-tracking ··· 30
Predictive Parser ·· 30
LL Parser ··· 32
LL Parsing Algorithm ·· 32

10. COMPILER DESIGN – BOTTOM-UP PARSING ·· 34
Shift-Reduce Parsing ·· 34

Compiler Design

iv

LR Parser ·· 34

LL vs. LR ··· 36

11. COMPILER DESIGN – ERROR RECOVERY ·· 37
Panic Mode ·· 37
Statement Mode ·· 37
Error Productions ··· 37
Global Correction ··· 37
Abstract Syntax Trees ·· 38

12. COMPILER DESIGN – SEMANTIC ANALYSIS ·· 40

Semantics ·· 40

Semantic Errors ··· 41

Attribute Grammar ·· 41
Synthesized Attributes ··· 41
Inherited Attributes ··· 42

S-attributed SDT ·· 43

L-attributed SDT ·· 43

13. COMPILER DESIGN – RUNTIME ENVIRONMENT ·· 45

Activation Trees··· 45

Storage Allocation ··· 47

Static Allocation ·· 47

Stack Allocation ··· 48

Heap Allocation ··· 48

Parameter Passing ··· 49
r-value ·· 49
l-value ·· 49
Formal Parameters ·· 49
Actual Parameters ··· 50

Pass by Value ··· 50

Pass by Reference ·· 50

Pass by Copy-restore ··· 50

Compiler Design

v

Pass by Name ·· 51

14. COMPILER DESIGN – SYMBOL TABLE ··· 52

Implementation··· 52

Operations ·· 53
insert() ··· 53
lookup() ·· 53

Scope Management ··· 54

15. COMPILER DESIGN – INTERMEDIATE CODE GENERATION ·· 56

Intermediate Representation ·· 56

Three-Address Code ·· 57

Declarations ·· 58

16. COMPILER DESIGN – CODE GENERATION ·· 60

Directed Acyclic Graph ·· 60

Peephole Optimization ·· 61
Redundant Instruction Elimination ·· 61
Unreachable Code ··· 62
Flow of Control Optimization··· 62
Algebraic Expression Simplification ··· 63
Strength Reduction ·· 63
Accessing Machine Instructions ··· 63

Code Generator ··· 63

Descriptors ·· 64

Code Generation ··· 64

17. COMPILER DESIGN – CODE OPTIMIZATION ··· 66

Machine-independent Optimization ·· 66

Machine-dependent Optimization ··· 67

Basic Blocks ··· 67
Basic Block Identification ··· 67
Control Flow Graph ·· 68

Loop Optimization ··· 69

Compiler Design

vi

Dead-code Elimination ·· 69
Partially Dead Code·· 70

Partial Redundancy ··· 71

Compiler Design

7

Computers are a balanced mix of software and hardware. Hardware is just a piece of

mechanical device and its functions are being controlled by a compatible software. Hardware

understands instructions in the form of electronic charge, which is the counterpart of binary

language in software programming. Binary language has only two alphabets, 0 and 1. To

instruct, the hardware codes must be written in binary format, which is simply a series of 1s

and 0s. It would be a difficult and cumbersome task for computer programmers to write such

codes, which is why we have compilers to write such codes.

Language Processing System

We have learnt that any computer system is made of hardware and software. The hardware

understands a language, which humans cannot understand. So we write programs in high-

level language, which is easier for us to understand and remember. These programs are then

fed into a series of tools and OS components to get the desired code that can be used by the

machine. This is known as Language Processing System.

1. COMPILER DESIGN – OVERVIEW

Compiler Design

8

The high-level language is converted into binary language in various phases. A compiler is a

program that converts high-level language to assembly language. Similarly, an assembler is

a program that converts the assembly language to machine-level language.

Let us first understand how a program, using C compiler, is executed on a host machine.

 User writes a program in C language (high-level language).

 The C compiler compiles the program and translates it to assembly program (low-

level language).

 An assembler then translates the assembly program into machine code (object).

 A linker tool is used to link all the parts of the program together for execution

(executable machine code).

 A loader loads all of them into memory and then the program is executed.

Before diving straight into the concepts of compilers, we should understand a few other tools

that work closely with compilers.

Preprocessor

A preprocessor, generally considered as a part of compiler, is a tool that produces input for

compilers. It deals with macro-processing, augmentation, file inclusion, language extension,

etc.

Interpreter

An interpreter, like a compiler, translates high-level language into low-level machine

language. The difference lies in the way they read the source code or input. A compiler reads

the whole source code at once, creates tokens, checks semantics, generates intermediate

code, executes the whole program and may involve many passes. In contrast, an interpreter

reads a statement from the input, converts it to an intermediate code, executes it, then takes

the next statement in sequence. If an error occurs, an interpreter stops execution and reports

it; whereas a compiler reads the whole program even if it encounters several errors.

Assembler

An assembler translates assembly language programs into machine code. The output of an

assembler is called an object file, which contains a combination of machine instructions as

well as the data required to place these instructions in memory.

Linker

Linker is a computer program that links and merges various object files together in order to

make an executable file. All these files might have been compiled by separate assemblers.

The major task of a linker is to search and locate referenced module/routines in a program

and to determine the memory location where these codes will be loaded, making the program

instruction to have absolute references.

Compiler Design

9

Loader

Loader is a part of operating system and is responsible for loading executable files into

memory and execute them. It calculates the size of a program (instructions and data) and

creates memory space for it. It initializes various registers to initiate execution.

Cross-compiler

A compiler that runs on platform (A) and is capable of generating executable code for platform

(B) is called a cross-compiler.

Source-to-source Compiler

A compiler that takes the source code of one programming language and translates it into the

source code of another programming language is called a source-to-source compiler.

Compiler Design

10

A compiler can broadly be divided into two phases based on the way they compile.

Analysis Phase

Known as the front-end of the compiler, the analysis phase of the compiler reads the source

program, divides it into core parts, and then checks for lexical, grammar, and syntax errors.

The analysis phase generates an intermediate representation of the source program and

symbol table, which should be fed to the Synthesis phase as input.

Synthesis Phase

Known as the back-end of the compiler, the synthesis phase generates the target program

with the help of intermediate source code representation and symbol table.

A compiler can have many phases and passes.

 Pass : A pass refers to the traversal of a compiler through the entire program.

 Phase : A phase of a compiler is a distinguishable stage, which takes input from the

previous stage, processes and yields output that can be used as input for the next

stage. A pass can have more than one phase.

2. COMPILER DESIGN –ARCHITECTURE

Compiler Design

11

The compilation process is a sequence of various phases. Each phase takes input from its

previous stage, has its own representation of source program, and feeds its output to the

next phase of the compiler. Let us understand the phases of a compiler.

3. COMPILER DESIGN – PHASES OF COMPILER

Compiler Design

12

Lexical Analysis

The first phase of scanner works as a text scanner. This phase scans the source code as a

stream of characters and converts it into meaningful lexemes. Lexical analyzer represents

these lexemes in the form of tokens as:

<token-name, attribute-value>

Syntax Analysis

The next phase is called the syntax analysis or parsing. It takes the token produced by lexical

analysis as input and generates a parse tree (or syntax tree). In this phase, token

arrangements are checked against the source code grammar, i.e., the parser checks if the

expression made by the tokens is syntactically correct.

Semantic Analysis

Semantic analysis checks whether the parse tree constructed follows the rules of language.

For example, assignment of values is between compatible data types, and adding string to an

integer. Also, the semantic analyzer keeps track of identifiers, their types and expressions;

whether identifiers are declared before use or not, etc. The semantic analyzer produces an

annotated syntax tree as an output.

Intermediate Code Generation

After semantic analysis, the compiler generates an intermediate code of the source code for

the target machine. It represents a program for some abstract machine. It is in between the

high-level language and the machine language. This intermediate code should be generated

in such a way that it makes it easier to be translated into the target machine code.

Code Optimization

The next phase does code optimization of the intermediate code. Optimization can be

assumed as something that removes unnecessary code lines, and arranges the sequence of

statements in order to speed up the program execution without wasting resources (CPU,

memory).

Code Generation

In this phase, the code generator takes the optimized representation of the intermediate code

and maps it to the target machine language. The code generator translates the intermediate

code into a sequence of (generally) re-locatable machine code. Sequence of instructions of

machine code performs the task as the intermediate code would do.

Compiler Design

13

Symbol Table

It is a data-structure maintained throughout all the phases of a compiler. All the identifiers’

names along with their types are stored here. The symbol table makes it easier for the

compiler to quickly search the identifier record and retrieve it. The symbol table is also used

for scope management.

Compiler Design

14

Lexical analysis is the first phase of a compiler. It takes the modified source code from

language preprocessors that are written in the form of sentences. The lexical analyzer breaks

these syntaxes into a series of tokens, by removing any whitespace or comments in the source

code.

If the lexical analyzer finds a token invalid, it generates an error. The lexical analyzer works

closely with the syntax analyzer. It reads character streams from the source code, checks for

legal tokens, and passes the data to the syntax analyzer when it demands.

Tokens

Lexemes are said to be a sequence of characters (alphanumeric) in a token. There are some

predefined rules for every lexeme to be identified as a valid token. These rules are defined by

grammar rules, by means of a pattern. A pattern explains what can be a token, and these

patterns are defined by means of regular expressions.

In programming language, keywords, constants, identifiers, strings, numbers, operators, and

punctuations symbols can be considered as tokens.

For example, in C language, the variable declaration line

int value = 100;

contains the tokens:

int (keyword), value (identifier), = (operator), 100 (constant) and ;

(symbol).

4. COMPILER DESIGN – LEXICAL ANALYSIS

Compiler Design

15

Specifications of Tokens

Let us understand how the language theory undertakes the following terms:

Alphabets

Any finite set of symbols {0,1} is a set of binary alphabets, {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

is a set of Hexadecimal alphabets, {a-z, A-Z} is a set of English language alphabets.

Strings

Any finite sequence of alphabets is called a string. Length of the string is the total number of

occurrence of alphabets, e.g., the length of the string tutorialspoint is 14 and is denoted by

|tutorialspoint| = 14. A string having no alphabets, i.e. a string of zero length is known as an

empty string and is denoted by ε (epsilon).

Special Symbols

A typical high-level language contains the following symbols:-

Arithmetic
Symbols

Addition(+), Subtraction(-), Modulo(%),
Multiplication(*), Division(/)

Punctuation Comma(,), Semicolon(;), Dot(.), Arrow(->)

Assignment =

Special Assignment +=, /=, *=, -=

Comparison ==, !=, <, <=, >, >=

Preprocessor #

Compiler Design

16

Location Specifier &

Logical &, &&, |, ||, !

Shift Operator >>, >>>, <<, <<<

Language

A language is considered as a finite set of strings over some finite set of alphabets. Computer

languages are considered as finite sets, and mathematically set operations can be performed

on them. Finite languages can be described by means of regular expressions.

Compiler Design

17

The lexical analyzer needs to scan and identify only a finite set of valid string/token/lexeme

that belong to the language in hand. It searches for the pattern defined by the language rules.

Regular expressions have the capability to express finite languages by defining a pattern for
finite strings of symbols. The grammar defined by regular expressions is known as regular

grammar. The language defined by regular grammar is known as regular language.

Regular expression is an important notation for specifying patterns. Each pattern matches a

set of strings, so regular expressions serve as names for a set of strings. Programming

language tokens can be described by regular languages. The specification of regular

expressions is an example of a recursive definition. Regular languages are easy to understand

and have efficient implementation.

There are a number of algebraic laws that are obeyed by regular expressions, which can be

used to manipulate regular expressions into equivalent forms.

Operations

The various operations on languages are:

 Union of two languages L and M is written as

L U M = {s | s is in L or s is in M}

 Concatenation of two languages L and M is written as

LM = {st | s is in L and t is in M}

 The Kleene Closure of a language L is written as

L* = Zero or more occurrence of language L.

Notations

If r and s are regular expressions denoting the languages L(r) and L(s), then

 Union : (r)|(s) is a regular expression denoting L(r) U L(s)

 Concatenation : (r)(s) is a regular expression denoting L(r)L(s)

 Kleene closure : (r)* is a regular expression denoting (L(r))*

 (r) is a regular expression denoting L(r)

Precedence and Associativity

 *, concatenation (.), and | (pipe sign) are left associative

 * has the highest precedence

5. COMPILER DESIGN – REGULAR EXPRESSIONS

Compiler Design

18

 Concatenation (.) has the second highest precedence.

 | (pipe sign) has the lowest precedence of all.

Representing valid tokens of a language in regular expression

If x is a regular expression, then:

 x* means zero or more occurrence of x.

i.e., it can generate { e, x, xx, xxx, xxxx, … }

 x+ means one or more occurrence of x.

i.e., it can generate { x, xx, xxx, xxxx … } or x.x*

 x? means at most one occurrence of x

i.e., it can generate either {x} or {e}.

[a-z] is all lower-case alphabets of English language.

[A-Z] is all upper-case alphabets of English language.

[0-9] is all natural digits used in mathematics.

Representing occurrence of symbols using regular expressions

letter = [a – z] or [A – Z]

digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 or [0-9]

sign = [+ | -]

Representing language tokens using regular expressions

Decimal = (sign)?(digit)+

Identifier = (letter)(letter | digit)*

The only problem left with the lexical analyzer is how to verify the validity of a regular

expression used in specifying the patterns of keywords of a language. A well-accepted solution

is to use finite automata for verification.

Compiler Design

19

Finite automata is a state machine that takes a string of symbols as input and changes its

state accordingly. Finite automata is a recognizer for regular expressions. When a regular

expression string is fed into finite automata, it changes its state for each literal. If the input

string is successfully processed and the automata reaches its final state, it is accepted, i.e.,

the string just fed was said to be a valid token of the language in hand.

The mathematical model of finite automata consists of:

 Finite set of states (Q)

 Finite set of input symbols (Σ)

 One Start state (q0)

 Set of final states (qf)

 Transition function (δ)

The transition function (δ) maps the finite set of state (Q) to a finite set of input symbols (Σ),

Q × Σ ➔ Q

Finite Automata Construction

Let L(r) be a regular language recognized by some finite automata (FA).

 States : States of FA are represented by circles. State names are written inside

circles.

 Start state : The state from where the automata starts is known as the start state.

Start state has an arrow pointed towards it.

 Intermediate states : All intermediate states have at least two arrows; one

pointing to and another pointing out from them.

 Final state : If the input string is successfully parsed, the automata is expected to

be in this state. Final state is represented by double circles. It may have any odd

number of arrows pointing to it and even number of arrows pointing out from it. The
number of odd arrows are one greater than even, i.e. odd = even+1.

 Transition : The transition from one state to another state happens when a desired

symbol in the input is found. Upon transition, automata can either move to the next

state or stay in the same state. Movement from one state to another is shown as a

directed arrow, where the arrows point to the destination state. If automata stays on

the same state, an arrow pointing from a state to itself is drawn.

Example : We assume FA accepts any three digit binary value ending in digit 1. FA = {Q(q0,

qf), Σ(0,1), q0, qf, δ}

6. COMPILER DESIGN – FINITE AUTOMATA

Compiler Design

20

Longest Match Rule

When the lexical analyzer read the source-code, it scans the code letter by letter; and when

it encounters a whitespace, operator symbol, or special symbols, it decides that a word is

completed.

For example:

int intvalue;

While scanning both lexemes till ‘int’, the lexical analyzer cannot determine whether it is a
keyword int or the initials of identifier int value.

The Longest Match Rule states that the lexeme scanned should be determined based on the

longest match among all the tokens available.

The lexical analyzer also follows rule priority where a reserved word, e.g., a keyword, of a

language is given priority over user input. That is, if the lexical analyzer finds a lexeme that

matches with any existing reserved word, it should generate an error.

Compiler Design

21

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

