AN

tutor-laISpomt

M P LY EASYLEARNI

www.tutorialspoint.com

ﬁ https://www.facebook.com/tutorialspointindia J https://twitter.com/tutorialspoint

Cypress

About the Tutorial

Cypress is the open-source and free test automation tool. It can be used for front end and
application programming interface (API) test automation. This tutorial shall provide you
with thorough concepts on Cypress and its features.

Audience

This tutorial is designed for the professionals working in software testing who want to hone
their skills on a robust automation testing tool like Cypress. The tutorial contains practical
examples on all important topics.

Prerequisites

Before proceeding with the tutorial, you should have a fair knowledge on JavaScript and
object oriented programming concepts. Besides this, a good understanding of basics in
testing is important to proceed with this tutorial.

Copyright & Disclaimer

© Copyright 2021 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

tutorialspoint

EIMPLYEAGSY LEARMNING

mailto:contact@tutorialspoint.com

Cypress

Table of Contents

ADOUL the TULOTTAl ..ottt s st st e s bt et et sse e b e e r e e reeresanesanes i
Yo 1= g T PSP PP U USRPRPR i

e =T =T o UL =TT PP TP PO PPPPPTRTRN i
(00T 03V T4 o A D T =1 ' =Y USRI i
TaBIE OF CONTENTS ..ttt st e et e st e e bt e st e e et e e sabe e s bt e sabeesaneesabeesaneesn i

1. Cypress — INtrodUCtion ...cccciiiiiiiiiiiiiiiiniiiiiniiiiiiiiisisssnnns 1
FRATUIES .ttt e a e e sra e e e 1

(D11 o AV] = =P UPRN 2

2. Cypress — Architecture and ENVIronment SEtUP.......cceeeseseemssssmssssssssssssssssssssnnnnns 3
Difference between Cypress and SEIENTUMcciiiiiiie e et e e e st e e e esar e e e eeabaae e sbaeeeens 3
CyPress ENVIFONMENT SELUDP cooiiiiiiii e e e e e e e e e e e e e e e e e e eees 4

3. CYPress — TESE RUNNEY c.....iiiiiiiieiiiiiiiiiiiiiiniiiiiiiiesmsssisssiinmsssssssssssimssnsssssss 11
4. Cypress — BUild FIrst TEST....ccccveiiiiiississ 13
(@7 TS Ho] (o LT gy 4 F ot U o <SS USRTRRNE 13
SErUCEUIE OF @ BASIC TEST ..curiiuiiiiiiieiierieere ettt ettt ne e sae e sreesaeeneeneene 13

5. Cypress — SUPPOItEd BrOWSENSccoiiiieeeeeniiiiiiiiennnnsisesirieenmsssssessesesnnssssssssssssnnssssssssssssnnnssssssssssnnnnnssnsns 16
EXECULION frOM Other BrOWSEI'S «..c..eiiieiiieiteeieet ettt st st h e bttt ettt s aeesb e b e b e et e eabesaeesaeesaee 16

6. Cypress — BasiC COMMANAS.....cccceuuiiiiiiiieimeniiiiiiiiieennesieeereresnnssssssesesesnnssssssssssssnnssssssssssesnnnsssssssssesnnnnssnsns 18
7. CYPress — Variables. ... iiiiiieieiciiniiierieecscesrrreenesssesssseeennssssssssesesnnsssssssssesennnsssssssssesnnnssssssssseennnnssnnns 26
8. CYPIeSS — AlIASES ..ceeeeeeiiiiiiieieeeiiiiiiiitennnsieeetireennsssssessesesnnnsssssssssesnnssssssssssesnnnssssssssssennnsssssssssssnnnnnssssnsanes 27
Y 0T LT = e) =) PSSR 27
3= 40 T=T o TSSO PRPP 27
ROUTES ..ttt e s saa e e 27
REOUESTS eteteitteietetetetetetete et e et ettt ettt sttt sttt 558t e85ttt st s et st et et st et s nbn e bnbnbnnnen 27

L T OV o T =T Rl e Yo | o1 3N 29
RUIES OF CSS EXPIrESSION ...uvviiiiiieiiiiiiieeiee e eecite et e e e e esb e e e e e e e st baeaeeeeeesaaabataeseaasseasastaeseaeesaaansbaaseaeesessnssanneanans 29

ii

tutorialspoint

EIMPLYEAGSY LEARMNING

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

CYPress — ASSEItiONS....cccciiiiiiiienniiiiiiiiieenniiisniiieessssssiisssssssssssnne
IMPLCIt ASSEITIONS ...evieeeeiiie ettt et e e et e e eeaees
EXPlICIT ASSEITIONS ..c.iiiieeeiiie et ettt e et e e s are e e e satre e e e
Other Cypress asSertionScouceerieeereeriieeeree ettt
Cypress — Text Verificationcccccviiiiiiiiinininniisnninnnnsnssssssnsssssssssnnes
Cypress — Asynchronous Behaviorccceeiiiiiniinninssssssssssssssssssnnes
PrOMISE i e e
Cypress — Working wWith XHRcccoviiiiiiiiiiiiiiiirnccccccccnsssscssnnnnns
CYPresS — JQUEIY...civeeeeeeiciirireennnnsiceeernennnssssssssssssnnnsssssssssssnnssssssssanns
Cypress — CheckboX......cccccviiriiririiicrccccccccrrrr s nnenes
CypPress COMMANGSueeieeiieiiiireeeeeeeriireee e e e e serrrrre e e e e e seearraeeeeessennnnnnes
CYPress — TabS....ccccciiiriiiricrcccrrrrsrsssssssss e sssssssssssssssssnsnnns
Cypress — Dropdownccccceviiiiiiiininssses
Dropdown Cypress COMMAaNASc.c.eeevueerieeniieeriieeesieesieesineesieesneenane
CYPress — AlErtS.....cccciiiiiiiiiiiiiiniiiiniiissses
Cypress — Child Windows........ccccoiiiiiiniininnnininnnnnnnnnninnnsssssssssssnssees
Cypress — Hidden Elementsccoiiirieeeeiiciiiinieeeencnccnnnneennnnsssesnnnns
CYPress — FramesS.....ccivveiiiieneiiiinniiiinnisiiesinessimssissssans
Cypress — Web Tables.......ccoorrrreeiciiiiiieircccnrnrcrreecccsr e seennesseseeees
Cypress — MOoUSE ACLIONS.....ccceeeeerciiiiireemenniieiirireennnsseesseseennnssssssnnnes
CYPress — COOKIEScceeueriiiiiiiiieecciirireeree e reennnese e e s eennnssssesnnnes
Cypress — Get and POStccccciiiiiiiiiiniininininnnnnnsssssssnes
Gt MEthOd ...
POSt MEENOD ...
Cypress — File Uploadccccovviiiiiiiiiiiniiininnnnnnnsnsssssssssssssssssssssssssssnns
Cypress — Data Driven Testingcccvveeeeeeeceiiriieeecenccenrreeenenssseesnnens
Cypress — Prompt Pop-up Windowcceeeeceiiriirreeencccnnineenennceennnnes

Cypress — Dashboards.........ccceeeeeeiiiiiiiieeccccrrrrreeccce e

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Setup Cypress Dashboard........cccccuevivciiee i
Cypress — Screenshots and Videos.........ccccceveeceiiinnininissnsssssssssssnnnnns
SCrEENSNOLS ..ttt s
VIOBOS ..ttt ettt et
Cypress — DebUgEINgcccvvvuereiiiiiiiiiinereiiiiisnnnree s
Cypress — Custom CommaNnds........cceeeeiiiisssssssssssssssssssssssssssssssssssssnes
CYPress — FIXTUIES....cccuuuuiiiiiiiiienniiiiiiiiinniiisssiinnssssssssssnnsssassssssssnnes
Cypress — Environment Variablescccoceereiiiiiiinniiniinnnnssnscsssssnnnns
Configure Environment Variables..........ccccovveeeiiiiiiciiee e,

CYPress — HOOKScceeiiiriiiiiiicccrissssssssssssssssssssssssssssssssssssssnsssnssnsnnns

Cypress — Configuration of JSON Fileccccceeeeriiirrinricnnnnsesssnseennnnns
Override Default values........cccooceiriiieiieniiceeec e
Override Default configurations.........cccceeceiiiieniiiiienne e,
Cypress — REPOItS....ccivieiiiiriiiiinniiinieiniiiiiinsiiissesene.
MOChaWeSOME REPOIuveiieiieeeiiiee ettt eee et e e s e e sbee e e
10 7o T3 A 0= To] o PPN
TEAMCILY REPOIT ..o
CYPress — PIUBINScceeeeeeiiiiiiiieeecccirrreenneesseesesesnnnsssssssssssnnnssssssnnnes
Cypress — GItHUDcoeeeeeiiiierec e ssee e
INSTAIATION ..ceiiiiiiieeeee e

GitHub Integration ENabling........cccceiveiieiiiiiie e,

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

1. Cypress — Introduction

Cypress is an open-source and free test automation tool, which can be used extensively
in the long run. It is mainly used for front end test automation. This tool is mainly
developed to solve the issues that the teams face, while automating an application.

Cypress helps to achieve the following:

e Configure tests.
e Create tests.
e Execute tests.

e Identify errors (if any).

Selenium and Cypress are often compared in terms of their functionalities. However,
Cypress is different in architecture and features. Moreover, it resolves some of the issues
we face in Selenium.

Cypress is based on Javascript and executes tests within the browser. It helps to develop
the tests which include:

e Unit tests.
e End to end tests.

o Integration tests.

Features

The important features of Cypress are listed below:

e Supports Test-Driven development.

e Provides Dashboard services.

e Efficient debugging with Developer Tools accompanied with generation of stack
trace and errors.

e Provides the screenshots for failed tests.

e Not necessary to add waits to stop the execution for some time. By-default, the
waits are applied, prior to executing the following step or assertion.

e Able to monitor and control the characteristics of server response, functions, and
timers, which are essentially needed for unit testing.

e Check and manage network traffic.

o Allows the multi-browser support.

e In-built feature to capture videos of execution is available.

e Can be integrated with continuous integration tools.

e Page responsiveness with viewport sizing.

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

e Reloads changes applied to tests by default.

e Friendly Application Programming Interfaces (APIs) are available.

e Test runner available, which allows the test execution straight from the User
Interface (UI).

Disadvantages

There are some disadvantages of using Cypress and they are listed below:

e It is only based on JavaScript.

e A relatively new tool and hence, the community support is not extensive.
e It cannot perform mobile testing.

¢ Shadow Document Object Model (DOM) cannot be accessed.

e Tabs/child windows are managed by workarounds.

tutorialspoint

EIMPLYEAGSY LEARMNING

2. Cypress — Architecture and Environment

Setup

Cypress architecture is illustrated in the below diagram:

Node.js Browser
Begin with Proxy
Cypress
Cypress Tests
Web socket
HTTP Request
Proxy Server S I Application under
HTTP Response Test
.
|

|

[Operating Svstem]

The source of the above diagram is https://www.tutorialspoint.com/cypress-architecture-
test-automation

Automation tools like Selenium work by running outside the browser. However, the
Cypress has a different architecture. It runs within the browser. Cypress is basically based
on the server - Node.js.

There is a continued interaction of Cypress with the Node.js and they work in coordination
with each other. As a result, Cypress can be utilised for testing both the front and backend
of the application.

Cypress is thus, capable of handling the tasks performed at a real time on the UI and
simultaneously can also perform the actions outside of the browser.

Difference between Cypress and Selenium

The basic differences between Cypress and Selenium are listed below:

@ tutorialspoint

EIMPLYEAGSY LEARMNING

https://www.tutorialspoint.com/cypress-architecture-test-automation
https://www.tutorialspoint.com/cypress-architecture-test-automation

Cypress

Cypress

Selenium

It is based on Javascript.

It is based on Java, C#, Python and JavaScript.

It has small community support

It has big community support.

It includes an in-built video capture
feature.

There is no in-built video capture feature.

No APIs are available to handle the
tabs/child windows.

APIs available to handle tabs/child windows.

No parallel execution can be performed.

Parallel execution can be performed.

Only installation of npm needed.

Supplemental Jars, libraries, and so on are
required to be added as project dependencies.

Cypress Environment Setup

For Cypress environment setup, visit the link: https://nodejs.org/en/download/. The

screen that will appear is given below:

HOME ABOUT DOWNLOADS

nede

GET INVOLVED SECURITY CERTIFICATION NEWS

Downloads

Download the Node.js source code or a pre-built installer for your platform, and start developing today.

LTS

Recommended For Mos

Windows Installer

Windows Installer (.msi)
Windows Binary (.zip)
macOS Installer (.pkg)
macOS Binary (.tar.gz)
Linux Binaries (x64)
Linux Binaries (ARM)

Source Code

Current

Latest Features

-
L

macOSs Installer Source Code
32-bit B4-bit
32-bit 64-bit
64-bit
64-bit
64-bit
ARMv7 ARMvE

node-vl4.15.5.tar.gz

There shall be both Windows and macOS Installer. We have to get the package as per the

local operating system.

m tutorialspoint

https://nodejs.org/en/download/

Cypress

For a 64- bit Windows configuration, the following pop-up comes up to save the installer.

You have chosen to open:

72 node-v14.15.5-x64.msi

which is: Windows Installer Package (28.9 MB)
from: https://nodejs.org

Would you like to save this file?

Save File Cancel

Once the installation is done, a nodejs file gets created in the Program files. The path of
this file should be noted. Then, enter environment variables from the Start, as shown
below:

w tutorialspoint

Cypress

All Apps Documents Settings Photos

Best match

Edit the system environment
variables —

Control panel

Settings

£ Edit environment variables for your 5
account

L environment variablesi I

In the System Properties pop-up, move to Advanced, click on Environment Variables. Then
click on OK.

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

System Properties b

Computer Name Hardware [Advanced | System Protection Remote

You must be logged on as an Administrator to make most of these changes.

Perfomance

Visual effects, processor scheduling, memory usage, and vitual memory
User Profiles

Desktop settings related to your signin h

Startup and Recovery

System startup, system failure, and debugging information

Environment Vanables ...

In the Environment Variables pop-up, move to the System variables section and click on
New.

Environment Vanables
User vanables for Owner
Vanable Value
OneDrive C\Users\Owner\OneDrive
Path C:\Program Files\MySQL\MySQL Shell 8.0\bin\;C:\Users\Owner\Ap...
TEMP C:\Users\Owner\AppData\Local\Temp
T™MP C:\Users\Owner\AppData\Local\Temp
a New... Edit... Delete

System variables

Variable Value
ANDROID_HOME C:\Users\Owner\AppData\Local\Android\Sdk\
ComSpec C:\Windows\system32\cmd.exe
DriverData C:\Windows\System32\Drivers\DriverData
JAVA_HOME C:\Program Files\Java\jdk1.8.0_211
MAVEN_HOME C:\Users\Owner\apache-maven-3.6.1\
NODE_HOME C:\Program Files\nodejs

_NUMBER OF PROCESSORS __ 4

| Ni Edit... Delete

Enter NODE_HOME and the node.js path (noted earlier) in the Variable name and the
Variable value fields respectively in the New System Variable pop-up.

' tutorialspoint

EIMPLYEAGSGYLEARNING

Cypress

New System Variable

"iansble name NODE_HOME

b

Vanable value: C:\Program Files\nodejd

Once the path of the node.js file is set, we shall create an empty folder (say
cypressautomation) in any desired location.

Next, we need to have a JavaScript editor to write the code for Cypress. For this, we can
download Visual Studio Code from the link https://code.visualstudio.com/

As per the local operating system, choose the correct package:

Download for Windows

A4
Stable Build

Stable Insiders

macOS Package 4 ¥
Windows x64 User Installer | ¥
Linux x64 .deb 4 ¥

rpm ¥ N

Other downloads

Once the executable file is downloaded, and all the installation steps are completed, the
Visual Studio Code gets launched.

OPEN EDITORS

e e]
» OUTLINE

Select the option Open Folder from the File menu. Then, add the CypressAutomation folder
(that we have created before) to the Visual Studio Code.

] Welcome X

> _OPEN EDITORS

EIMPLYEAEGBYLEARNINTIG

w \tutorialspoint

https://code.visualstudio.com/

Cypress

We need to create the package.json file with the below command from terminal:

npm init

We have to enter details like the package name, description, and so on, as mentioned in
the image given below:

55 automation’

Once done, the package.json file gets created within the project folder with the information
we have provided.

{} packagejson X

OPEN EDITORS

§ CYPRESSAUTOMATION fI

Finally, to install Cypress run the command given below:

npm install cypress --save-dev

You will get the following output:

w Mtutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

npm

npm

10

EIMPLYEAEGBYLEARNINTIG

J' tutorialspoint

3. Cypress — Test Runner

Cypress Test Runner helps to trigger the test execution. As we complete Cypress
installation, there comes a suggestion from the tool on the terminal, as mentioned below:

You can open Cypress by running: node_modules/.bin/cypress open

To open the Test Runner, we have to run the below mentioned command:

node_modules/.bin/cypress open

The Test Runner window opens up after some time with the message that a sample project
folder structure has been provided by Cypress under examples folder.

Click on the OK, got it! button. The screen that will appear on your computer would be as
follows:

To help you get started...

We've added some folders and example tests to your project. Try running the tests
in the ©3 examples folder or add your own test files to [cypresslintegration.

B Cypress

B cypress
B fixtures
B example json
> integration
B examples
B actions spec js
B aliasing.spec.js
17 more flle
& plugins
B ingex.js
B support
B commands js
B index.js

[

Then the Test Runner is launched, with the more than one spec files available under the
examples folder, as stated below:

11

I@. tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

© Support = Docs aLlogin
8 Runs g Settings

@ Chrome 78 v

) assertions.spec.js

To run a specific file, for example, test2.spec.js, we have to click it. Also, the browser and
the option to Stop the execution are available.

CypressAutomation

© Support = Docs & Login
<> Tests £ Runs & Settings

k2
@ & Running Electron 85
Q search..

v INTEGRATION TEST

0

® Running 1 spec
>~ B examples

1] testl.spec.|s

® [estz:spec.js}

The execution shall begin with the following screen showing the test steps, name of test
case, test suite, URL, test duration, dimension of browser, and so on.

CTests x 03.49 H [y o f " 2 T j i ?;()
Tutonaispoint G I
visit

12
w Stutarialspoint

ASBYLEARMNINIG

4. Cypress — Build First Test

Once Cypress has been configured, a framework gets created within the project which is
automatically visible in the Explorer. The new test file (say FirstTest.spec.js) should be
created within the integration folder, as mentioned below.

v CYPRESSAUTOMATION

v integration 'exambl S \

Cypress Folder Structure

Let us understand the folder structure in Cypress. The factors that are included in a
Cypress folder are explained below:

fixtures: Test data in form of key-value pairs for the tests are maintained here.
integration: Test cases for the framework are maintained here.

plugins: Cypress events (prior and post events to be executed for a test) are
maintained here.

support: Reusable methods or customized commands, which can be utilised by test
cases directly, without object creation are created here.

videos: Executed test steps are recorded in the form of videos and maintained here.
node_modules: Project dependencies from the npm are maintained in this folder.
It is the heart of the Cypress project execution.

cypress.json: Default configurations are set in this folder. The values of the current
configurations can be modified here, which overrules the default configurations.
package.json: Dependencies and scripts for the projects are maintained in this
folder.

Structure of a Basic Test

Cypress follows the JavaScript test frameworks (Mocha, Jasmine, and so on). To create a
test in Cypress, we have to adhere to the below mentioned framework guidelines:

13

EIMPLYEAGSY LEARMNING

@ tutorialspoint

Cypress

e Test suite name has to be provided within the describe function.
e Test case names within a test suite have to be provided within the same or you
have to specify the function.

e Test steps within a test case have to be implemented inside the it/specify block.

Basic Test Implementation

The basic test implementation can be done by using the following command:

// test suite name
describe('Tutorialspoint Test', function () {
// Test case
it('Scenario 1', function (){
// test step for URL launching
cy.visit("https://www.google.com/");
})s
1)

The cy command used above does not require an object invocation. It becomes available
by default on installing the node modules.

Test Execution

For execution from the command line, run the command given below:

./node_modules/.bin/cypress run

Here, all the files within the integration folder get triggered.

For execution from the Test Runner, run the command stated below:

./node_modules/.bin/cypress open

Then, click on the spec file that we want to trigger for execution.

To trigger execution for a specific file from command line, run the command
mentioned below:

cypress run --spec "<spec file path>"

The following screen will appear on your computer:

14

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

% ./node modules/.bin/cypress run

(Run Starting)

5.6.0
Electron 85
1 found (examples/FirstTest.spec.js)

Running:

Tutorialspoint

(Run Finished)

15

w \tutorialspoint

EIMPLYEAGSY LEARMNING

5. Cypress — Supported Browsers

Cypress can run tests in browsers like Chrome, Electron, and Firefox. In the Test Runner,
we have the option to choose the browser from the right upper corner.

Also, it must be noted that if a browser option is not available, it means we do not have
the latest version of that browser in our system.

CypressAutomation © Support = Docs = Login
</> Tests 2 Runs & Settings 1 Electron 85 © ~
Q. Search [€ Chrome 86

@ Firefox 78 A

~ INTEGRATION TESTS COLLAF

v~ B examples

O FirstTest.spec.js

Execution from Other Browsers

The execution from other browsers from Command Line is explained below:

To run the execution in Chrome, you need to run the below mentioned command:

./node_modules/.bin/cypress run -- browser chrome

You can see the following screen:

./NOQe moauties,/.bin/ e55 run --bD Er cnrome

(Run Starting)

s/FirstTest.spec.

To run the execution in Firefox, run the command given below:

./node_modules/.bin/cypress run -- browser firefox

You can see the following screen:

$./node modules/.bin/cypress run --browser f

(Run Starting)

(examples/FirstTest.spec.js)

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

To run the execution in headed mode, run the command given below:

./node_modules/.bin/cypress run -- headed

From the command line, Cypress executes tests in headless mode, if no option is specified.

17

m tutorialspoint

6. Cypress — Basic Commands

Cypress basic commands are listed below:

and

It is used to create an assertion and is an alias of .should ().

The usage is as follows:

//element is visible & enabled
cy.get('#txt"').should('be.visible').and('be.enabled")
//element is checked

cy.contains('Subject').and('be.checked")

as

It provides an alias for later usage.

The usage is as follows:

//alias element as parent

cy.get('#txt"').find('1i").first().as('parent")

blur

It blurs an element in focus.

The usage is as follows:

//blur input
cy.get('#txt"'). type('abc').blur()

check

It checks radio buttons or checkboxes and is applied to elements having input tags.

The usage is as follows:

//checks element having class attribute chkbox

cy.get('.chkbox").check()

children

It obtains the sub elements of an element.

The usage is as follows:

w tutorialspoint

EIMPLYEAGSY LEARMNING

18

Cypress

//obtains children of element n

cy.get('n").children()

clear

It removes the value from textarea or input.

The usage is as follows:

//removes input abc

cy.get('#txt"'). type('abc').clear()

clearCookie

It removes a particular browser cookie.

The usage is as follows:

//clear abc cookie

cy.clearCookie('abc")

clearCookies

It removes the browser cookies from an existing domain and subdomain.

The usage is as follows:

//clear all cookies

cy.clearCookies()

clearLocalStorage

It removes the local Storage data from an existing domain and subdomain.

The usage is as follows:

//clear all local storage

cy. clearLocalStorage ()

click
It clicks an element in Document Object Model (DOM).

The usage is as follows:

//click on element with id txt
cy.get('#txt').click()

contains

19

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

It obtains an element having a specific text. The element can have more than the text and
still match.

The usage is as follows:

//returns element in #txt having Tutor text

cy.get('#txt').contains('Tutor")

dblclick

It double-clicks an element in Document Object Model (DOM).

The usage is as follows:

//double clicks element with id txt
cy.get('#txt').dblclick()

debug

It fixes a debugger and log values are returned by prior command.

The usage is as follows:

//pause to debug at start of command

cy.get('#txt').debug()

document

It obtains window.document on the active page.

The usage is as follows:

cy.document()

each
It iterates through an array having the property length.

The usage is as follows:

//iterate through individual 1i
cy.get('li').each(() => {...})

end

It ends a command chain.

The usage is as follows:

//obtain null instead of input

cy.contains('input').end()

20

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

€q

It refers to an element at a particular index in an array of elements.

The usage is as follows:

//obtain third td in tr
cy.get('tr>td').eq(2)

exec

It runs a system command.

The usage is as follows:

cy.exec('npm init")

find
It obtains the descendant elements of a particular locator.

The usage is as follows:

//obtain td from tr
cy.get('tr').find('td")

first

It obtains the first element from a group of elements.

The usage is as follows:

//obtain first td in tr
cy.get('tr>td").first()

get
It obtains single or multiple elements by locator.

The usage is as follows:

//obtain td from tr

find
It obtains the descendant elements of a particular locator.

The usage is as follows:

//obtain all td from tr in list
cy.get('tr>td")

21

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

getCookie

It obtains a particular browser cookie by its name.

The usage is as follows:

cy.getCookie('abc")

getCookies

It obtains all the cookies

The usage is as follows:

cy.getCookies()

go

It moves forward or backward to the next or previous URL in browser history.

The usage is as follows:

//1like clicking back button
cy.go('back")

//1like clicking forward button
cy.go('forward")

visit
It launches an URL.

The usage is as follows:

cy.visit('https://www.tutorialspoint.com/index.htm")

next

It obtains the immediate sibling of an element within a group of elements in Document
Object Model (DOM).

The usage is as follows:

//gives the following link in element 1.

cy.get('l a:first').next()

parent

It obtains the parent element from a group of elements in DOM.

The usage is as follows:

//get parent of element with class h

N
N

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

cy.get('.h").parent()

should

It is used to create an assertion and is an alias of .and ().

The usage is as follows:

//assert element is visible & enabled

cy.get('#txt"').should('be.visible').and('be.enabled")

wait

Wait for a certain time in milliseconds or for an aliased element prior to moving the
following step.

The usage is as follows:

cy.wait(10090)

title

It obtains the document.title of the active page.

The usage is as follows:

cy.title()

viewport
It manages the dimension and positioning of the screen.

The usage is as follows:

// viewport to 100px and 500px
cy.viewport (100, 500)

log
It prints the messages to the Command Log.

The usage is as follows:

cy.log('Cypress logging ')

reload

It is used for page reloading.
The usage is as follows:
23

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

cy.reload()

w \tutorialspoint

EIM

PLYEAGSYLEARMNINIG

24

7. Cypress — Variables

In Cypress, there is usage of variables like var, let, and const. While working with closures,
we can use the objects that were obtained without assignment. But, this is not the case,
when we are working with mutable objects.

When an object modifies its characteristics, we may need to compare its prior value to its

new value.

Code Implementation

We can do the code implementation by using the below mentioned command:

cy.get('.btn').then(($span) => {
// value capture before button click and stored in const
const n = parselInt($span.text())
cy.get('b').click().then(() => {
// value capture after button click and stored in const
const m = parselnt($span.text())
// comparison
expect(n).to.eq(m)
b
})

In the above case, we are using const variables since object $span is undergoing change.
While dealing with mutable objects and its value, it is recommended to use variables of
type const.

25

w tutorialspoint

EIMPLYEAGSY LEARMNING

8. Cypress — Aliases

Cypress aliases are an important component that have multiple uses. These uses are listed
below:

Sharing Context

We have to use .as() to alias something that we have to share. To alias objects and
primitives, Mocha context objects are used. The alias object can be accessed with this.*.

Mocha by default, shares context for all the hooks applicable for the test and the alias
properties are flushed post the execution of a test.

describe('element', () => {
beforeEach(() => {
cy.wrap('eleone').as('x")
})
context('subelement', () => {
beforeEach(() => {
cy.wrap('eletwo').as('y")
})
it('aliases properties', function () {
expect(this.x).to.eq(' eleone ")
expect(this.y).to.eq(' eleone ")
}
})
b
b

We can handle fixtures by sharing context. We can also use cy.get(), which is an
asynchronous command, to access an alias with the help of @ symbol (instead of using
this.*) This is a synchronous command.

beforeEach(() => {
// alias fixtures
cy.fixture('users.json").as('u'")
})
it('scenario’, function () {

// '@' to handle aliases
cy.get('@u').then((u) => {

26

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

// access element argument
const i = u[@]
//verification
cy.get('header').should('contain', u.name)
})
})

Elements

Alias can be used with Document Object Model (DOM) elements and later be reused. Here
in the below example, by default Cypress makes a reference to td collection obtained as
the alias cols. To use the same cols, we have to use cy.get() command.

// alias td in tr
cy.get('tr').find('td').as('cols")
cy.get('@cols').first().click()

As we used @ in cy.get(), Cypress searches for the present alias (cols) and yields its
reference.

Routes

Aliases can be utilised with routes. It makes sure that the application has made the
requests. Then, it awaits a response from the server and accesses the request for

verification.

cy.intercept('POST', '/users', { id: 54 }).as('u')

cy.get('#btn").click()

cy.wait('@u').then(({ request }) => {

//assertion
expect(request.body).to.have.property('name’, 'User')

1)

cy.contains('User added')

Requests

Aliases can be utilised with requests. We can alias a request and later use its properties.
This can be done as follows:

cy.request('https://jsonplaceholder.cypress.io/comments').as('c")
// other implementations if any

cy.get('@c').should((response) => {

if (response.status === 404) {

27

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

// assertion
expect(response).to.have.property('duration')
} else {

// do something else

1)
})

28

w tutorialspoint

9. Cypress — Locators

Cypress only supports the Cascading Style Sheets (CSS) selectors to identify the elements.
However, it can also work with xpath, with the help of the 'Cypress-Xpath' plugin.

Let us consider an html code snippet and understand some of the rules of css expression.

v <tre
v ¢td id="gs tti5@" class="gsib a"»
<input id="gsc-i-id1" class="gsc-input™
autocomplete="off" type="text" size="
name="search” title="search" style="width: 1@

padding: ©px; border: medium none; margin: 8p
epeat scroll left center; outline: currentcol
none medium;" dir="1tr" spellcheck="false">»

Rules of CSS expression

The rules of Cascading Style Sheets (CSS) expression are as follows:

e Syntax with attribute-id and tagname is tagname#id: Here, the css expression
should be -input#gsc-i-id1.

e Syntax with attribute-class and tagname is tagname.class: Here, the css expression
should be - input.gsc-input.

¢ Syntax with any attribute value and tagname is tagname[attribute="value': Here,
the css expression should be - input[title='search'].

¢ Syntax with parent to child traversal is parent child: Here, the css expression should
be -tr td.

Cypress gives the feature of Open Selector Playground from which we can locate and
identify elements automatically. This feature resides inside the Test Runner window which
is highlighted in the below image.

CypressAutomation

File Edit View Window Help Developer Tools

< Tests v X --) 05.91 1 (& 0 https:/iwww.google.com/

On clicking on the Open Selector Playground, an arrow gets visible. Click on it and move
it to the element, which we have to identify. The css expression gets populated in the field
cy.get available just to the right of the arrow.

Simultaneously, the element gets highlighted, as shown in the following image:

29

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

File Edit View Window Help Developer Tools

£ Tests v 1 X- (O-/0591 | et (G O https://www.google.com/ 1000 x 660 (57%) @

I§ cypress/integration/examples/FirstTest.spec.js m v cy.get(' .gLFyf .)I > O X

~ Tutorialspoint
— ~ =

v Scenario 1

~ TEST BODY
visit https://www.google.com/

(xhr) ® GET Jcomplete/search?osep=.,

30

' tutorialspoint

EIMPLYEAGSGYLEARNING

10. Cypress — Assertions

Cypress has more than one type of assertions obtained from various libraries like Mocha,
Chai, and so on. The assertion types are explicit and implicit.

Implicit Assertions

If an assertion is applicable to the object obtained from the parent command in a chain, it
is known as the implicit assertion. The popular implicit assertions include .and/.should.

These commands cannot be used as standalone. Generally, they are used when we have
to verify multiple checks on a particular object.

Let us illustrate implicit assertion with an example given below:

// test suite
describe('Tutorialspoint', function () {
it('Scenario 1', function (){
// test step to launch a URL
cy.visit("https://www.tutorialspoint.com/videotutorials/index.php")

// assertion to validate count of sub-elements and class attribute value
cy.get('.toc chapters').find('li').should('have.length',5)
.and('have.class', 'dropdown')

1)
})s

Execution Results

The output is as follows:

31

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress
< Tests Vv X — O - 07.69 ' 1 c (43 https://www.tutorialspoint.com/videotutorials/subscription.php

cypress/integration/examples/FirstTest.spec.js 1000 X 660 (54%) @

1
I‘»l ackoges d&Liorary [EleBooks <‘-JLog(1

Tutorialspoint

@umoﬁdmotnc W ot | oo s i

v Scenario 1

- ; Subscribe to Premium Packages

visit https://www.tutorialspoint...

(xhr) @ FOST 260 tlect2v=16 v=f87., ENJOY PREMIUM CONTENT AT AFFORDABLE PRICE

get ,float-right

- find 11 2 8

“Load cxpected T - a
<11:dfopd¢.)wn.dropt‘iown- u 0]
notification.nav-item>, 4
more... 1 to have a STARTER STANDARD PREMIUM
length of 5

+ 300+ Quality Video Courses + 90 eBooks of your Cholce

-] expected [

<li.dropdown.dropdown-
notification.nav-item>, 4
more...] to have class
dropdown

+ 300+ Quality Video Courses

The output logs show two assertions obtained with should, and commands.

Explicit Assertions

If an assertion is applicable to an object directly, it is known as the explicit assertion. The
popular explicit assertions include assert/expect.

The command for explicit assertion is as follows:

// test suite
describe('Tutorialspoint', function () {
// it function to identify test
it('Scenario 1', function (){
// test step to launch a URL
cy.visit("https://accounts.google.com")
// identify element
cy.get('hl#headingText').find("'span').then(function(e){
const t = e.text()
// assertion expect
expect(t).to.contains('Sign')
)
b
})

Execution Results

The output is given below:

32

' tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

- c @ © £ httpsi//accounts.google.com/ /#/tests/integration/exar =o» & ¥ mw o & e =
£ Tests v 1 e 10.12 I c' (Z) https://accounts.google.com/signin/v2/identifier?pass 1000 x 660 (1]
cypress/integration/examples/FirstTest.spec.js

Tutorialspoint
v Scenario 1 Google
I Sign in

Use your Google Account

® 2 Create account m

The output logs show assertions directly applied to objects with the expect command.

Cypress has Default Assertions which are internally handled and do not require to be
invoked specifically.

Few examples are as follows:

e cy.visit (): Expects the page to show the content with 200 status code.

e cy.request (): Expects the remote server to be available and sends a response.

e cy.contains (): Expects the web element with its properties to be available in DOM.
e cy.get (): Expects the web element to be available in DOM.

e .find (): Expects the web element to be available in DOM.

e .type (): Expects the web element to turn to a type able state.

e .click (): Expects the web element to turn to a clickable state.

e .its (): Expects for a web element property on the existing subject.

Other Cypress assertions

The other Cypress assertions are as follows:

length

It checks the count of elements obtained from the previously chained command.

For example,

cy.get('#txt-fld').should("'have.length',5)

value

It checks whether the web element has a certain value.

For example,

33

EIMPLYEAEGBYLEARNINTIG

w \tutorialspoint

Cypress

cy.get(' #txt-fld').should('have.value', 'Cypress')

class

It checks whether the web element possesses a certain class.

For example,

cy.get('#txt-fld'").should('have.class', 'txt')

contain

It checks whether the web element possesses a certain text.

For example,

cy.get('#txt-fld'').should('contain', 'Cypress')

visible
It checks whether the web element is visible.

For example,

cy.get('#txt-fld'').should('be.visible")

exist

It checks whether the web element is available in Document Object Model (DOM).

For example,

cy.get('#txt-fld'").should('not.exist"');

CSS

It checks whether the web element possesses a certain css property.

For example,

cy.get('#txt-fld'"').should('have.css', 'display', 'block');

34

tutorialspoint

EIMPLYEAGSY LEARMNING

11. Cypress — Text Verification

The method text can be used to obtain text of a webelement. Assertions can also be added
to verify the text content.

Implementation with text()

Given below is the command for the implementation with text() with regards to
verification:

// test suite
describe('Tutorialspoint', function () {
// it function to identify test
it('Scenario 1', function (){
// test step to launch a URL
cy.visit("https://accounts.google.com")
// identify element
cy.get('hl#theadingText').find('span').then(function(e){
//method text to obtain text content
const t = e.text()
expect(t).to.contains('Sign")
})
})
})

Execution Results

The output is as follows:

35

w tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

&« Cc © & &k https;//accounts.google.com/ /#/tests/integration/exa: ss= ©& mw o & e =
< Tests v X — 10.12 1 g < https://accounts.google.com/signin/v2/identifier?pass 1000 X 660 o

cypress/integration/examples/FirstTest.spec.js

Tutorialspoint

v Scenario 1 Google

: Sign in‘H

Use your Google Account

ected Sign in "T‘f¥7ﬂ

The output logs show the text Sign in obtained with the text method.

Implementation with text assertions

We can also implement assertions on web element text with the help of the following
command:

// test suite
describe('Tutorialspoint', function () {
// it function to identify test
it('Scenario 1', function (){
// test step to launch a URL
cy.visit("https://accounts.google.com")
// verify text with have.text

cy.get('hil#theadingText').find('span').should('have.text",
'Sign in')

1)
1)

Execution Results

The output is mentioned below:

36

m tutorialspoint

Cypress

&« C @® © §& https://accounts.google.com/ /#/tests/integration/exa: «» ©& INn @O &
€ Tests v X — J- 07.94 1 (&5 © https://accounts.google.com/signin/v2/identifier?pass 1000 x ¢

cypress/integration/examples/FirstTest.spec.js

Tutorialspoint
v Scenario 1 Google
— Signin
S Use your Google Account
visit https://accounts.google.com -> 30.
get hl#headingText Email o phon I
- find span
S Forgot emai?
-EEMERd expected to have text
Sign in Mot your computer? Use o Private Windaw to gign
Learn more
e
(xhr) @ POST 200 /lo orimat=jso 2 Creste nccount Next

The output logs show the text verification done with should assertion.

37

@ tutorialspoint

EIMPLYEAGSY LEARMNING

12. Cypress — Asynchronous Behavior

Cypress is derived from node.js, which is based on JavaScript. Cypress commands are
synchronous in nature, since they are dependent on node server. Asynchronous flow
means that the test step does not depend on its prior step for execution.

There is no dependency and each of the steps is executed as a standalone identity. Though
the test steps are arranged in a sequence, an individual test step does not consider the
outcome of the previous step and simply executes itself.

Example

Following is an example of asynchronous behavior in Cypress:

// test suite
describe('Tutorialspoint', function () {
it('Scenario 1', function (){
// test step to launch a URL
cy.visit("https://accounts.google.com")
// identify element
cy.get('hl#theadingText').find('span').should('have.text', 'Sign

cy.get('hl#theadingText').find('span').then(function(e){
const t = e.text()
// get in Console
console.log(t)
})
// Console message
console.log("Tutorialspoint-Cypress")
})
b

Execution Results
The output is given below:

Gements Comsole

al
G © e .

Tutorialspolnt-Cyprass f
e Sign in ;

Sonin
Sgnin DiwTools falles t
™ 100 ph BROGIE LU0 1oad cantent fer

< e v = ('S f ¢ ° - e |w

v VRIS s rmna /g
’ code ABS, nuticERA WTTP
-

38

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

Promise

Right-click on Test Runner and click on Inspect, and we can verify results in the Console.
Here, Tutorialspoint-Cypress (an earlier step) is logged in the Console before Sign = in
(step added later).

Cypress commands are designed in such a way that every step is executed in sequence
and they are not triggered simultaneously. But, they are lined up one behind another.
Thereby, it makes the flow as synchronous. This is achieved with Promise.

In the above example, console.log is a pure JavaScript statement. It does not have the
ability to line up and wait similar to Cypress commands. Promise allows us to execute
Cypress commands in a serial mode.

Modes in Promise

A Promise has three modes to categorise the state of a command execution. They are as
follows:

¢ Resolved: This outcome occurs, if the test step runs successfully.
e Pending: This is the outcome, if the test step run result is being awaited.

e Rejected: This is the outcome, if the test step runs unsuccessfully.

A Cypress command gets executed, only if the prior step has been executed successfully
or a resolved promise response is received. Then, the method is used to implement
Promise in Cypress.

Example

Following is an example of Promise in Cypress:

describe('Tutorialspoint Test', function () {

it('Promise', function (){

return cy.visit('https://accounts.google.com')

.then(() => {

return cy.get('hl#heading');

1)

1)

}

39

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

Cypress implementation for Promise is encapsulated and not visible. Thus, it helps to have
a more compact code. Also, we do not have to consider the state of Promise, while
automating the tests.

Implementation without Promise

Following command explains how an implementation can be done without promise in
Cypress:

describe('Tutorialspoint Test', function () {
it('Without Promise', function (){
cy.visit('https://accounts.google.com")
cy.get('hl#theading')

1)

1)

40

EIMPLYEAGSY LEARMNING

w \tutorialspoint

13. Cypress — Working with XHR

XHR is XML HTTP Request. It is an Application Programming Interface (API) which is
available as an object, whose methods send data between a web browser and server. An
object in XHR can request data from a server in the form of a response.

Cypress can not only be used for front end automation, but also can control the network
traffic by directly accessing the XHR objects. Then, it applies the assertions on the objects.
It can mock or stub a response. An XHR details can be seen in the Network tab in the
browser.

XHR response Header is as follows:

¥ O inspector) Comsole [Debugger 4 Notwork {} Style Bditor () perfarmance O Memory [storage T Accessibility §3 What's New

g Il Q ® M # {55 .r{E;

Me Damain File Isitiatex Wpe Trwstered Size B Heasders Coolies Reguest Resporse Timings Stack Trace

» GET jranplacenoider cypress iofcomments’

200 (1
HTIP/?
125 K8 (255 B size
O elormer wran-downgrace

The response is as follows:

G O gwoe £ Canaste 6.'..:.'.,;..‘"}'}_'7.:,,_‘ '() PO, YO O womsry) enge & Aceundny Y Wharsmee) %

o Q © A oW DM teee g Make W O bt Cate M Swarmnd P4

To make an XHR request, the cy.request() command is used. The method cy.intercept()
is used to redirect the responses to the matching requests.

Implementation of XHR request

Given below is the command to explain the implementation of XHR request in Cypress:

cy.request('https://jsonplaceholder.cypress.io/comments').as('c")

//aliasing request

cy.get('@c').should((response) => {
expect(response.body).to.have.length(100)

expect(response).to.have.property('headers")

1)

41

@ tutorialspoint

EIMPLYEAGSY LEARMNING

14. Cypress — jQuery

Cypress can act upon jQuery objects and its methods along with its internal commands.
While Cypress uses the get method to identify a web element, JQuery uses the $() method
for the same purpose.

In Cypress, the command for identifying a web element is as follows:

cy.get('hl#theading")

Whereas in case of jQuery, the command for identification of a web element is as follows:

$('hl#heading')

Cypress is based on JavaScript which is of asynchronous nature. However, Cypress
commands behave synchronously by resolving the Promise internally, which is hidden from
the end user.

Nevertheless, when Cypress acts upon jQuery objects and its methods, the Promise logic
has to be implemented specifically, to make flow synchronous (with the help of method
then).

For instance, while we want to extract the text content of a web element (with jQuery
method - text), we require to implement Promise with the then method.

Promise Implementation in jQuery

Following is the command for the Promise Cypress implementation in jQuery:

// test suite
describe('Tutorialspoint', function () {
// it function to identify test
it('Scenario 1', function (){
// test step to launch a URL
cy.visit("https://accounts.google.com")
// Promise implementation with then()
cy.get('hi#theadingText').find('span').then(function(e){
//method text to obtain text content
const t = e.text()
expect(t).to.contains('Sign')
)
}
})

42

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

In jQuery, an empty collection is returned, if the locator which is provided, does not match
with any of the web elements in DOM.

In order to avoid exceptions, it is recommended to verify the length of the jQuery collection
yielded by $(). The command for the same is as follows:

const e = $('#txt")
if (e.length > 0){
//proceed

}

However, in case, there are no matching web elements in DOM, the Cypress automatically
goes to the retry mode till the element is available or there is a timeout, as shown below:

cy.get('"#txt")
.then((e) => { //proceed working on element })

The method yields a Promise. Also, the Promise shall be in resolved mode, only if a web
element is matched with the locator. If the Promise is in a reject state, the logic within the
then block will nhever be executed.

We can access jQuery methods in Cypress, with the following expression:

Cypress.$('#txt'), where #txt is the locator.

Implementation of jQuery methods

Given below is a command for the identification and execution of the test in Cypress with
jQuery:

// test suite
describe('Tutorialspoint', function () {
// it function to identify test
it('Scenario 1', function (){
// test step to launch a URL
cy.visit("https://accounts.google.com")
// access web element with Cypress.$
cy.request('/"').get("'hl#theadingText').then(function(e){
Cypress.$(e).find("'span')
const t = e.text()
cy.log(t)
)
}
})

43

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress
As the above test is executed, if we open the Console (pressing F12), and find for the
verify our test, as shown below:

required web element, with the expression Cypress.$ (‘hl#headingText").text(), we can

(=

(7.}

The log message - Sign —in is obtained from the cy.log command in Cypress.

w \tutorialspoint

EIMPLYEAEGBYLEARNINTIG

a4

15. Cypress — Checkbox

The commands check and uncheck are used to work with checkbox. In the html code, a
checkbox has an input tag and its type attribute has the value as checkbox.

Cypress Commands

The checkbox related Cypress commands is as follows:

¢ The command used to click all the checkboxes is as follows:

cy.get('input[type="checkbox"]").check()

e The command used to click a checkbox with id check is as follows:

cy.get('#chk").check()

e The command used to click a checkbox with value Cypress is as follows:

cy.get("input[type="checkbox"]"').check('Cypress")

¢ The command used to click the checkboxes with values - Java and Python is
as follows:

cy.get('input[type="checkbox"]"').check(['Java', 'Python'])

e The command used to click the checkbox having value Java with options is as
follows:

cy.get('.chk').check('Java', options)

e The command used to click the checkboxes with values - Java and Python
with options is as follows:

cy.get('input[type="checkbox"]"').check(['Java', 'Python'], options)

e The command used to click the checkbox having class check with an option
is as follows:

cy.get('.chk'").check({force : true})

e The command used to uncheck all the checkboxes is as follows:

cy.get('input[type="checkbox"]").uncheck()

¢ The command used to uncheck a checkbox with id check is as follows:

cy.get('#chk").uncheck()

45

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

e The command used to uncheck the checkbox with value Cypress is as follows:

cy.get('input[type="checkbox"]").uncheck('Cypress")

e The command used to uncheck the checkboxes with values - Java and Python
is as follows:

cy.get("input[type="checkbox"]"').uncheck(['Java', 'Python'])

e The command used to uncheck the checkbox having value Java with options
is as follows:

cy.get('.chk").uncheck('Java', options)

e The command used to uncheck the checkboxes with values - Java and Python
with options is as follows:

cy.get('input[type="checkbox"]").uncheck(['Java', 'Python'], options)

¢ The command used to uncheck the checkbox having class check with an
option is as follows:

cy.get('.chk").uncheck({force : true)

Options in Cypress

The options which are available in Cypress are as follows:

¢ log — Default value - true: This is used to turn on/off console log.

¢ timeout - Default value - defaultCommandTimeout(4000ms): This is used
to provide the maximum wait time prior to throwing an error.

o force — Default value - false: This is used to enforce an action.

¢ scrollBehaviour — Default value - scrollBehaviour(top): This is for the position
of viewport up to which element to be scrolled prior command execution.

¢ waitForAnimations - Default value - waitForAnimations(true): This is used
to wait for elements to complete animation prior running the commands.

¢ animationDistanceThreshold - Default value — animationDistanceThreshold
(5): This is for the pixel distance of an element that should be exceeded to qualify

for animation.

Both check/uncheck commands require to be chained with commands that yield DOM
elements and assertions can be applied to these commands.

Implementation of Cypress Commands

The implementation of the commands in Cypress is explained below:

// test suite

46

tutorialspoint

EIMPLYEAGSY LEARMING

)

Cypress

describe('Tutorialspoint', function () {
// it function to identify test
it('Scenario 1', function (){
// test step to launch a URL
cy.visit("https://accounts.google.com/signup™)

//checkbox with assertion

cy.get('input[type="checkbox"]").check().should('be.checked")

//identify checkbox with class with assertion

cy.get('.VFfPpkd-muHVFf-bMcfAe').uncheck().should('not.be.checked")

1)
1)

Execution Results

The output is mentioned below:

Chrome is being controlled by automated test software.

{ Tests Vv 1 X - 7 05.65 I C' Q https://accounts.google.com/signup/v2/webcreateaccount?flowNar
cypress/integration/examples/FirstTest.spec.js E] v cy.get(’ .VfPpkd-muHVFf-bt |*) 0 o> @ Lear
Tutorialspoint

B 1000 x 66(
v Scenario 1
Gocgle
visit https://accounts.google.com/.. Create your Google Account
xhr) @ POST 200 [ormat=fjson.2
get inputltype="checkbox"] i
- check Ugername @gmall com
-EEEE] expected <input.VfPpkd-
mquFf‘bMCfAe> to h‘:‘ Checked Jze my current emall sddress sastead @ =
get N FPpkd-muHVFf-bicfAe =
- uncheck =
(xhr) . (I 200 ¢ ¢ 3
-EEEI5] expected <input.VfPpkd-
muHVFf-bMcfAe> not to be
Sign in Instoad
checked m

The above results show the checkbox to the left of the Show password, first getting
checked with the check command (verified with assertion-should).

Then, it is unchecked with the uncheck command (also verified with assertion-should).

47

@ tutorialspoint

EIMPLYEAGSY LEARMNING

16. Cypress — Tabs

Cypress does not have a specific command to work with tabs. It has a workaround method
in jQuery through which it handles the tabs. In the html code, a link or button opens to a
new tab, because of the attribute target.

If the target attribute has value blank, it opens to a new tab. Cypress uses the jQuery
method removeAttr, which is invoked by the invoke command. The removeAttr deletes
the attribute, which is passed as one of the parameters to the invoke method.

Once the target=blank is removed, then a link/button opens in the parent window. Later
on after performing the operations on it, we can shift back to the parent URL with the go
command.

The Html code for the same is as follows:

<h3»0pening a new window</h3>»
Click Here

</div>

Implementation

Given below is the implementation of the use of commands with regards to tabs in
Cypress:

describe('Tutorialspoint', function () {
// test case

it('Scenario 1', function (){

// url launch

cy.visit("https://the-internet.herokuapp.com/windows™)

// delete target attribute with invoke for link
cy.get('.example > a')
.invoke('removeAttr', 'target').click()
// verify tab url
cy.url()
.should('include', 'https://the-internet.herokuapp.com/windows/new")
// shift to parent window
cy.go('back");
1
1)

Execution Results
48

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

The output is as follows:
https://the-internet.herokuapp.com/windows

ol C |p©

m v cy.get(' .example > a

{Tests 1 X- (O- 0260

& cypress/integration/examples/FirstTest.spec.js

- Tutorialspoint
v Scenario 1 . N
o Opening a new window
visit https://the-internet.herokuapp.com/windows Click Here
(xhr) | Ry event?a=2982799674d=29827996 78 ymfal sekn=h11ps
get .example > 3
- invoke .removeAttr{target)
- click
(xhr) ® GET (abarted) 2 296 gage
(page load) toac
(new url) 1ttp e ter e C 1Ew
url
. expected https://the-internet.herokuapp.com/windows/new to include
https://the-internet.herokuapp.com/windows/new

go back

The output logs show the deletion of the target attribute and launch of the new tab within

the parent window.

49

' tutorialspoint

EIMPLYEAGSY LEARMNING

17. Cypress — Dropdown

The command select is used to work with static dropdown. In the html code, a dropdown
has a select tag and the dropdown elements are represented by option tagname.

Dropdown Cypress Commands

The dropdown related Cypress commands are as follows:

e The command used to choose the option Cypress is as follows:

cy.get('select').select('Cypress')

e The command that chooses options Tutorialspoint and JavaScript is as
follows:

cy.get('select').select(['Tutorialspoint’, 'JavaScript'])

e The command which can choose a value of a dropdown option along with
options (to modify default characteristics) is as follows:

cy.get('select').select('optionl', options)

e The command that chooses the multiple values with options is as follows:

cy.get('select').select(['optionl', 'option2'], options)

Options for dropdown in Cypress

The options which are available for the dropdown in Cypress are as follows:

¢ log — Default value - true: This is used to turn on/off the console log.
e timeout - Default value - defaultCommandTimeout(4000): This is used to
provide the maximum wait time for the selection prior to throwing an error.

o force — Default value - false: This is used to enforce an action.

Assertion can be applied to the select commands in Cypress.

Let us make an attempt to select the option India from the dropdown having value as 99
in the html code.

50

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

-

ek
Afveln. .. Country :_|lindia

;' D Inspector B consale O Debugger T Network () Style Editor m Performance 0 Memory B Storage

ve="3" 1dbel="American Samoa"> ** </option>
» ralue="4" label="Andorra™ = <
b <coption value="5" label="Angola™ = ¢/option>

Implementation

The implementation of the dropdown commands to select the option India in Cypress is
explained below:

// test suite
describe('Tutorialspoint', function () {
// it function to identify test
it('Scenario 1', function (){
// test step to launch a URL
cy.visit("https://register.rediff.com/register/register.php")

//select option India with value then verify with assertion

cy.get('select[id="country"]"').select('99"').should('have.value', '99')

1)
1)

Execution Results

The output is stated below:

51

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

< vix- 0O 08.59 O http://register.rediff.com/register/register.php
Home
e rediff.com

5 cypress/integration/examples/FirstTest.s Create a Rediffmail account

Jec.js

Full Name s [

= Tutorialspoint

Choose a Rediffmail ID 0 |

Check availability |

v Scenario 1

TEST BODY

Password

visit
http://register.rediff.com..

: |

Retype password :
:

C

get Alternate Email Address i
select[id="country"] | Click if you don't have an alternate 1D
-select 99 Mobile No. bl 8 - |—| o
& assert
et Date of Birth : [Day v|[Monthv|| Year v|
expected <select#country>
to have value '99' Gender : @Male O Female
1live in || Country : |india I v
City : [Select v

The output shows that the Country dropdown selects the option India (in the html code,
this option is identified with the value as 99).

52

' tutorialspoint

EIMPLYEAGSY LEARMNING

18. Cypress — Alerts

Cypress can work with alerts by default. The pop-up can be an alert or confirmation pop-
up. Cypress is designed in such a way that it shall always click on the OK button on the
pop-up. Moreover, Cypress has the ability to fire the browser events.

An alert is triggered by window:alert event. This is by default handled by Cypress and
the OK button on the alert gets clicked, without being visible during execution.

However, the execution logs will show the presence of the alert.

Implementation Alerts

The implementation of alerts in Cypress is given below:

describe('Tutorialspoint Test', function () {
// test case

it('Scenario 1', function (){

// launch url
cy.visit("https://register.rediff.com/register/register.php");

// click submit
cy.get("input[type="submit"]").click();
})s
})s

Execution Results

The output is as follows:

53

w tutorialspoint

EIMPLYEAGSY LEARMNING

Tumonckspaart

Cypress

Create a Rediffmall account

Ful Nurm

Choose & RedBmal 1D

Fossword
Retgpe posyarrd

Aty Erea AdS e

Wobée No
Dane of By

Gender

| how Comty ;

Ervey the tes shown abowe

The alert message gets displayed on the Cypress execution logs.

|
Gveantnad com

Chreck avalsdery

Chch f s mart fown o shmrinte ©

L Day vl Mathe Year v

T Mak teriake

Cypress has the ability to fire the window:alert event by utilising the method on. Then, we

can verify the alert text.

However, this event shall happen in the back end and will not be visible during the

execution.

Implementation Alert text verification

Given below is the implementation for the alert text verification in Cypress:

{

})
})s

describe('Tutorialspoint Test', function () {
// test case

it('Scenario 1', function (){

// launch url

// click submit
cy.get('input[type="submit"]"').click();
// fire event with method on

cy.on('window:alert', (t)=>

//assertions

expect(t).to.contains('Your full name');

cy.visit("https://register.rediff.com/register/register.php");

@ tutorialspoint

EIMPLYEAGSY LEARMNING

54

Cypress

})s

Execution Results

The output is mentioned below:

< Tess v X - 1363 ’ 3 o (=} /gt sadiff
Crpmrasgration/mompbesFindTmt apec. s Create a Rediffmail account
Mcakpai e —
v . Cneose a Redfimal I | Qeeantmal cam
Check matahiey
S } Y Fassword
qet
Futygw plcssvecrd
ik
. Anermate Emal Actress
R e ver | Voor TUTT Famm TAReoT B¢ FUN . LUanes 900 Che i1 you sant haww an afbeate £
your PErRinese aed Laaleses 2.5 Nemeer Bhagest '
sar full sase Mobe No t
- S o | eeweopoy | prmsgA

The output logs show the successful verification of the alert text, produced by firing the
alert event by Cypress.

For a confirmation pop-up, the browser event window:confirm is triggered. Just like alert
pop-ups, Cypress can fire this event with the method on and clicks on the OK button by
default.

Example

Let us have a look at the below example. Here, on clicking the Click for JS Confirm
button, a confirmation pop up gets displayed.

JavaScript Alerts

Here are some examples of different JavaScript alerts which can be troublesome for automation

Click for JS Alert

Click for JS Confirm

Click for JS Prompt

Result:

55

I@. tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

The following confirmation pop-up with OK and Cancel buttons getting displayed.

lam a JS Confirm

[oK || Cancel

On clicking the OK button, the following is displayed:

You clicked: Ok

An image like the one given below will be displayed:

JavaScript Alerts

Here are some examples of diff

Click for JS Alert

Click for JS Confirm

Click for JS Prompt

Result:

You clicked: Ok

On clicking the Cancel button, the following is displayed below Result:

You clicked: Cancel

An image like the one given below will be displayed:

56

' tutorialspoint

EIMPLYEAGSGYLEARNING

Cypress

JavaScript Alerts

Here are some examples of diff

Click for JS Alert

Click for JS Confirm

Click for JS Prompt

Result:

[You clicked: Cancel |

Implementation Confirmation verification

Given below is an implementation for the confirmation verification of alerts in Cypress:

describe('Tutorialspoint Test', function () {
// test case
it("Scenario 1", function () {
//URL launched
cy.visit("https://the-internet.herokuapp.com/javascript_alerts")
//fire confirm browser event and accept
cy.get(':nth-child(2) > button').click()
cy.on("window:confirm", (t) => {
//verify text on pop-up
expect(t).to.equal("I am a IS Confirm");
1)
})s
})s

Execution Results

The output is stated below:

57

' tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

€ Tess v 1 x 0142 { & Q tHox //the-mtamet herotuopp
ypressfintagration/maamples/Six Testspec s

Tutorioispoint Test JavaScript Alerts

Here are some examples of diferent JavaScript alerts which can be b

[wunnrt] P Te T a0)5 Contdre 1o ecual T am a JS Confimm

The output logs show the successful verification of the confirmation text, produced by
firing the confirm event by Cypress.

Implementation Cancel click

The implementation of cancel click on confirmation pop up in Cypress is as follows:

describe('Tutorialspoint Test', function () {

// test case

it("Scenario 1", function () {

// URL launched

cy.visit("https://the-internet.herokuapp.com/javascript_alerts")
//fire confirm browser event
cy.on("window:confirm", (s) => {

return false;

})s
// click on Click for JS Confirm button
cy.get(':nth-child(2) > button').click()

// verify application message on Cancel button click

cy.get('#result').should('have.text', 'You clicked: Cancel')

})s
})s

Execution Results

The output is given below:

58

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

CTesty W x 0104 1 C i
cyseen/irdngrtion/encrrolua/S i Tind spec s
Tutoriakpoint Test JavaScript Alerts

Here are some examples of difierest JxvaScnpt nlerss winch can be troublesame for automation

CheX for 25 Alert

Chich for 35 Confem

Chck for 25 Prompt

[anant 1] it «prrssile> 1 Sov Teet You cliched: Cancel

Result:

You Choked Cancel

The output logs show the successful verification of the text You clicked: Cancel, which
is produced on clicking the Cancel button on the confirmation pop up.

59

w tutorialspoint

EIMPLYEAGSY LEARMNING

19. Cypress — Child Windows

Cypress does not have a specific command to work with child windows. It has a
workaround method in jQuery through which it handles the child windows. In the html
code, a link or button opens to a child window, because of the attribute target.

If the target attribute has value blank, it opens to a child window. Cypress uses the jQuery
method removeAttr, which is invoked by the invoke command in Cypress. The removeAttr
deletes the attribute, which is passed as one of the parameters to the invoke method.

Once the target=blank is removed, then a link/button opens in the parent window and
after performing operations on it, we can shift back to the parent URL with the go
command.

The Html code for opening a child window in Cypress is as follows:

<h3»0pening a new window</h3>»
Click Here

</div>

Implementation

Given below is an implementation of the commands for child windows in Cypress:

describe('Tutorialspoint', function () {
// test case

it('Scenario 1', function (){

// url launch

cy.visit("https://the-internet.herokuapp.com/windows™)

// delete target attribute with invoke for link
cy.get('.example > a')
.invoke('removeAttr', 'target').click()
// verify child window url
cy.url()
.should('include', 'https://the-internet.herokuapp.com/windows/new")
// shift to parent window
cy.go('back");
1
})s

Execution Results

60

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

The output is as follows:
https://the-internet.herokuapp.com/windows

ol C |p©

m v cy.get(' .example > a

{Tests 1 X- (O- 0260

& cypress/integration/examples/FirstTest.spec.js

- Tutorialspoint
v Scenario 1 . N
o Opening a new window
visit https://the-internet.herokuapp.com/windows Click Here
(xhr) | Ry event?a=2982799674d=29827996 78 ymfal sekn=h11ps
get .example > 3
- invoke .removeAttr{target)
- click
(xhr) ® GET (abarted) 2 296 gage
(page load) toac
(new url) 1ttp e ter e C 1Ew
url
. expected https://the-internet.herokuapp.com/windows/new to include
https://the-internet.herokuapp.com/windows/new

go back

The output logs show the deletion of the target attribute and launching of the child window

within the parent window.

61

' tutorialspoint

EIMPLYEAGSY LEARMNING

20. Cypress — Hidden Elements

Cypress can handle the hidden elements. There are occasions, when the submenus get
displayed only on hovering over the main menu. These submenus are initially made hidden
with the Cascading Style Sheets (CSS) property display:none.

For handling the hidden elements, Cypress takes the help of the jQuery method show. It
has to be invoked with the help of the Cypress command (invoke['show']).

For example, on hovering over the Sign in menu, the Sign in button gets displayed, as
shown below:

Hello, Sign in
Account® Lists ~

[Sign in ’

Rlaiid mnad s e Fhmnks R,

On moving the mouse out of the Sign in menu, the Sign in button gets hidden, as displayed
below:

Hello, Sign in
~ Account & Lists ~

mes Amazon Home Pharmacy Support

Implementation

The implementation of the hidden elements with jQuery show method is as follows:

describe('Tutorialspoint Test', function () {

// test case

it('Scenario 1', function (){

// launch URL

cy.visit("https://www.amazon.com/");

// show hidden element with invoke

cy.get('#nav-flyout-ya-signin').invoke('show"');

//click hidden element

cy.contains('Sign').click();

()]
N

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

})s
})s

Execution Results
The output is given below:

¢ Tt v % 2,85 1 o o

amazon

Turonafspoint Test

The execution logs show the hidden elements represented by an icon at the right of the
steps.

Cypress has another technique for handling hidden elements.

For example, to click a hidden element we can use the Cypress command click and pass
the option {force : true} as a parameter to it - click({ force: true }).

This modifies the hidden characteristics of the hidden element and we can click it.

Implementation with click

Given below is the implementation with click having option in Cypress:

describe('Tutorialspoint Test', function () {

// test case

it('Scenario 1', function (){

// launch URL

cy.visit("https://www.amazon.com/");

//click hidden element

cy.contains('Sign').click({force:true});

})s
})s

63

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

Execution Results

The output is mentioned below:

Chrome = being controlled by automated test software,

€ Tesis v < 18.% 3 G L= 2 £Ape M
verwsLAntagromsn oxomplonThing Test ape amazon
Tutonalspoint Test

Sign-In
vl o1 roti pram et
wisl
* B

orlaine ' ——y A e e—

elick

The execution logs show the hidden element clicked (Sign in) and we are navigated to the
next page.

64

@ tutorialspoint

EIMPLYEAGSY LEARMNING

21. Cypress — Frames

The earlier versions of Cypress were unable to access the elements inside frames. But, the
recent versions have a solution for frame.

To work with frames, first, we have to install a Cypress plugin with the command given
below:

npm install -D cypress-iframe

The screen which will be displayed is given below:

For the frame implementation in Cypress, we have to add the statement import 'cypress-
iframe’' in the code. A tagname called frame/iframe is used to represent frames in the

html code.

The following screen will appear on your computer:

w ilframe class="demo-frame® src="/résources/demos/drageable/default, htnl™
¥ #document
<!DOCTYPE html>
w<html Lo V,"-Aeﬂh) event
P <hoad) = 1d
v <body>
v <div 1d="draggable" class="ul-widget-content ul-draggable ui-draggable-handle” style="position: relative;"s evant
<polrag me around</p>
/div>
dy>
</netnd>

</iframes

Cypress command frameload is used to move the focus from the main page to the frame.
Once the focus is shifted, we can interact with the elements inside the frame.

This is done with the cy.iframe method.

Implementation

Given below is the implementation of the Cypress command for frames, by using the
cy.iframe method:

import 'cypress-iframe’

describe('Tutorialspoint Test', function () {

65

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

// test case

it('Test Case6', function (){

// launch URL

cy.visit("https://jqueryui.com/draggable/");

// frame loading

cy.frameLoaded('.demo-frame');

//shifting focus
cy.iframe().find("#draggable").then(function(t){

const frmtxt = t.text()

//assertion to verify text

expect(frmtxt).to.contains('Drag me around');

cy.log(frmtxt);

}

})s

})s

Execution Results

The output is as follows:

Interactions Draggable

Widgats

The execution logs show the accessing elements inside a frame and the text grabbed within
it.

66

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress
Cypress cannot handle more than one frame in a page.

Also, for frame Intellisense to Cypress, we can add /// <reference types = "Cypress-
iframe"/> to the code.

67

w tutorialspoint

22. Cypress — Web Tables

Cypress is capable of handling the web tables. A table is basically of two types, which are
dynamic and static. A static table has a fixed number of columns and rows unlike a dynamic
table.

In an html code, a table is represented by table tagname, while rows are represented by
tr, and columns by td.

e To access the rows, the Cypress command is as follows:

cy.get("tr")

¢ To access the columns, the Cypress command is as follows:

cy.get("td") or cy.get("tr td")

e To access a particular column, the CSS expression should be as follows:

td:nth-child(column number)

e To iterate through the rows/columns of the table, the Cypress command each
is used.

In Cypress, we have the command next to shift to the immediate following sibling
element. This command has to be chained with get command. The command prev is used
to shift to the immediate preceding sibling element.

The Html structure of a table is given below:

w {table id="tablel" style="width:188% border-spacing: S5px" border="1"»
» <tbody>»

b <tr>@</trs

BoLtrs g/t
B <tre i< Ere
B <tre i< Ere
B <tre i< Ere
</tbody>
</table>

Example

Let us take an example of a table, and verify the content of the second column TYPE (Open
Source) corresponding to the value Selenium, which is in the first column AUTOMATION
TOOL.

The following screen will appear on your computer:

68

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

AUTOMATION TOOL TYPE LINK

Selenium Open Source https://www.seleniumhg.org/

UFT Commercial Unified Functional Tester

Ranorex Commercial https://www.ranorex.com/

TestComplete Commercial Test Complete
Implementation

Given below is the implementation of the Cypress commands related to tables:

describe('Tutorialspoint Test', function () {

// test case

it('Scenario 1', function (){

//URL launch

cy.visit("https://sqengineer.com/practice-sites/practice-tables-selenium/")

// identify first column

cy.get('#tablel> tbody > tr > td:nth-child(1)').each(($elm, index, $1list)
=>{

// text captured from columnl

const t = $elm.text();

// matching criteria
if (t.includes('Selenium')){
// next sibling captured
cy.get('#tablel > tbody > tr > td:nth-child(1)")
.eq(index).next().then(function(d)

// text of following sibling
const r = d.text()

//assertion
expect(r).to.contains('Commercial');

1)

69

EIMPLYEAGSY LEARMNING

w \tutorialspoint

Cypress

1}

s

})s

Execution Results

The output is as follows:

Tutonaispoint Test

vinit

.
a9
et 4
put
- wg
s
[nssert] | Opun Source Opan Source

Q Ll 1 comyy

SOFTWARE QUALITY ENGINEER

PRACTICE TABLES

i p LM TPl SO DA 1O WO 0N Wi Selersum (5
prr
First Table
Can yon thek on sach ki i e Wt oo of et takie
AUTOMATION TOOL TYPL LINK
P i pan Source
mernal
Ranocex O TeY O

N (o QX132 20

The execution logs show that the value in the column TYPE is captured as Open Source.
This happens as it is the immediate following sibling to the element Selenium (first column)

which appears in the same row.

¥

EIMPLYEAGSY LEARHN

tutorialspoint

I NG

70

23. Cypress — Mouse Actions

Cypress can handle hidden elements. There are occasions when submenus get displayed
only on hovering over the main menu. These submenus are initially made hidden with the
CSS property display:none.

For handling hidden elements, Cypress takes the help of the jQuery method show. It has
to be invoked with the help of the Cypress command (invoke['show']).

For example, on hovering over the Mouse Hover button, the Top and Reload buttons get
displayed, as shown below:

Mouse Hover

C

Top

Reload

On moving the mouse out of the Mouse Hover button, the Top and Reload buttons get
hidden, as shown below:

Mouse Hover

Implementation with jQuery show method

Given below is the implementation with jQuery show method in Cypress:

describe('Tutorialspoint Test', function () {

// test case

it('Scenario 1', function (){

// launch URL

71

w tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

cy.visit("https://learn.letskodeit.com/p/practice");

// show hidden element with invoke

cy.get('div.mouse-hover-content').invoke('show');

//click hidden element

cy.contains('Top').click();

})s
})s

Execution Results

The output is as follows:

Tutorialspoint Test j 2
|5
gt !'2 Aumo« Course
} : Lecs Kode It | Selensum
|4 [Lets Kade 1t | Python P
visit https://learn, letskodeit, com/p/practice } : [Lecs Kode n | Javascr|
§ E
S i
s I
shr) @ :
e i
S E: CIITEETD
get div.nouse-hover.contant ‘“T
- invoke showl) s
contains Top =
- click

Rekoad

The execution logs show the hidden element - Top button represented by an icon at the
right of the steps.

72

w tutorialspoint

EIMPLYEAGSY LEARMNING

24. Cypress — Cookies

Cypress handles cookies with the methods Cookies.preserveOnce() and
Cookies.defaults(). The method Cookies.debug() produces logs to the console, if there
are any changes to the cookies.

By default, Cypress removes all cookies prior to each test execution. We can utilise
Cypress.Cookies.preserveOnce() to preserve the cookies with their names to be used
for other tests.

Syntax

The syntax for the commands related to the cookies in Cypress are as follows:

This will produce console logs, if cookie values are configured or cleared.

Cypress.Cookies.debug(enable, option)

Here,

e enable - if debug of cookie should be enabled.

e option - configure default values for cookies, for example, preserve cookies.

Cypress.Cookies.debug(true) // logs will generate if cookies are
modified

cy.clearCookie('cookiel")

cy.setCookie('cookie2', 'val')

To reduce the level of logging.

Cypress.Cookies.debug(true, { verbose: false })

Cypress.Cookies.debug(false) // logs will not generate if cookies are modified

The syntax given below will preserve the cookies and they will not be cleared prior
execution of another test.

Cypress.Cookies.preserveOnce(cookie names...)

This syntax is used to modify global configuration and to maintain a group of cookies that
are preserved for a test. Any modification will be applicable for that particular test.
(maintained in cypress/support/index.js file and are loaded prior to test execution).

Cypress.Cookies.defaults(option)
Cypress.Cookies.defaults({

preserve: 'cookiel'

1)

73

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

Here, the cookie named cookiel will not be cleared before running the test.

Cookie Methods

Some of the cookie methods in Cypress are as follows:

e cy.clearCookies(): It removes all the cookies from present domain and
subdomain.

e cy.clearCookie(name): It removes a cookie from the browser by name.

¢ cy.getCookie(name): It is used to obtain a cookie from the browser by name.

e cy.getCookies(): It is used to obtain all the cookies.

e cy.setCookie(name): It can configure a cookie.

Implementation

Given below is the implementation of the cookie methods in Cypress:

describe('Tutorialspoint Test', function () {
// test case
it('Scenario 1', function (){
// launch the application
cy.visit("https://accounts.google.com");
// enable cookie logging
Cypress.Cookies.debug(true)
//set cookie
cy.setCookie('cookiel', 'valuel')
//get cookie by name and verify value
cy.getCookie('cookiel').should('have.property', 'value', 'valuel')
//clear cookie by name
cy.clearCookie('cookie")
//get all cookies
cy.getCookies()
//clear all cookies
cy.clearCookies()
//verify no cookies
cy.getCookies().should('be.empty")
})s
})s

Execution Results

The output is mentioned below:

74

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

CTess 1 %X-— (O-— 0931 ot ¢

I cypress/integration/examples/FourTest.spec.js
= Tutorialspoint Test

+ Scenario 1

¥ TEST BODY
visit https://accounts.google.com -> 362: https://accounts.google.com/Servicelogin?pass.
» (xhr) @ POST 2608 /log?format=]son&hasfast=true 2

setCookie cookiel, valuel
getCookie cookiel
-EEXgE] expected { Object (name, value, ...) } to have property value

-BEX3E] expected { Object (name, value, ...) } to have property value of
valuel

© clearCookie cookie

getCookies

clearCookies

. getCookies

10 -XIEd expected [1 to be empty
11 - expected [] to be empty

75

tutorialspoint

EIMPLYEAGSGYLEARNING

25. Cypress — Get and Post

The Get and Post methods are a part of the Application Programming Interface (API)
testing, which can be performed by Cypress.

Get Method

To perform a Get operation, we shall make a HTTP request with the cy.request() and
pass the method Get and URL as parameters to that method.

The status code reflects, if the request has been accepted and handled correctly. The code
200(means ok) and 201(means created).

Implementation of Get

The implementation of Get method in Cypress is explained below:

describe("Get Method", function(){
it("Scenario 2", function(){
cy.request("GET", "https://jsonplaceholder.cypress.io/comments", {
}).then((r) => {
expect(r.status).to.eq(200)
expect(r).to.have.property('headers"')
expect(r).to.have.property('duration')
})s
})
})

Execution Results

The output is as follows:

€ Tests v 1 x O 00.64 1 (%

cypress/integration/examples/FourTest.spec.js

Get Method
v Scenano 2
request @ GET 200 https://jsonplaceholder.cypress.io/comments
m expected 200 to equal 200
A expected { Object (body, headers, ...) } to have property headers
-XE] expected { Object (body, headers, ...) } to have property duration

76

w tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

Post Method

While using the Post method, we are actually sending information. If we have a group of
entities, we can append new ones at the end, with the help of Post.

To perform a Post operation, we shall make a HTTP request with the cy.request() and
pass the method Post and URL as parameters to that method.

Implementation of Post

Given below is an implementation of Post method in Cypress:

describe("Post Method", function(){
it("Scenario 3", function(){
cy.request('https://jsonplaceholder.cypress.io/users? limit=1")
.its('body.0') // yields the first element of the returned list
// make a new post on behalf of the user
cy.request('POST', 'https://jsonplaceholder.cypress.io/posts’, {
title: 'Cypress’',
body: 'Automation Tool',
})
}
1)

Execution Results

The output is given below:

€ Tests vl X-- 00.43 1 c

cypress/integration/examples/FiveTest.spec.js

Post Method
v Scenario 3
|; request @ GET 206 https://jsonplaceholder.cypress.io/users? limit=1
- its
request @ POST 2081 https://jsonplaceholder.cypress.io/posts

77

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

26. Cypress — File Upload

To perform file upload task in Cypress, we have to first install a plugin with the command
mentioned below:

npm install -dev cypress-file-upload

The following screen will appear on your computer:

3
3

T

Once the installation is done, we have to add the statement import 'cypress-file-upload' in
the command.js file. This file resides inside the support folder within our Cypress project.

Also, we shall add the file that we want to upload within the fixtures folder (Picture.png
file). The following screen will be displayed:

v CYPRESSAUTOMATION
cypress

To upload a file, we have to use the Cypress command, attachFile and pass the path of
the file to be uploaded as a parameter to it.

Implementation

The implementation of the commands for uploading a file in Cypress is as follows:

describe('Tutorialspoint Test', function () {
// test case

it('Test Case6', function (){

//file to be uploaded path in project folder

78

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

const p = 'Picture.png'’

// launch URL
cy.visit("https://the-internet.herokuapp.com/upload")
//upload file with attachFile
cy.get('#file-upload').attachFile(p)

//click on upload
cy.get('#file-submit').click()

//verify uploaded file
cy.get('#uploaded-files').contains('Picture")

1
})s
Execution Results
The output is as follows:
& v x 17 25 1 @ o
;;;mnhpcc711Tm | File Uploaded!

The execution logs show that the file Picture.png got uploaded and the file name got
reflected on the page.

79

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

27. Cypress — Data Driven Testing

Cypress data driven testing is achieved with the help of fixtures. Cypress fixtures are
added to maintain and hold the test data for automation.

The fixtures are kept inside the fixtures folder (example.json file) in the Cypress project.
Basically, it helps us to get data input from external files.

CYPRESSAUTOMATION

Cypress fixtures folder can have files in JavaScript Object Notation (JSON) or other formats
and the data is maintained in "key:value" pairs.

All the test data can be utilised by more than one test. All fixture data has to be declared
within the before hook block.

Syntax

The syntax for Cypress data driven testing is as follows:

cy.fixture(path of test data)
cy.fixture(path of test data, encoding type)
cy.fixture(path of test data, opts)

cy.fixture(path of test data, encoding type, options)

Here,
o path of test data is the path of test data file within fixtures folder.
¢ encoding type: Encoding type (utf-8, asci, and so on) is used to read the file.
¢ Opts: Modifies the timeout for response. The default value is 30000ms. The wait

time for cy.fixture(), prior throws an exception.

Implementation in example.json

Given below is the implementation of data driven testing with example.json in Cypress:

80

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

"email": "abctest@gmail.com",

"password": "Test@123"

Implementation of Actual Test

The implementation of actual data driven testing in Cypress is as follows:

describe('Tutorialspoint Test', function () {
//part of before hook
before(function(){
//access fixture data
cy.fixture('example').then(function(signInData){

this.signInData = signInData

1)
1}

// test case
it('Test Casel', function (){
// launch URL
cy.visit("https://www.linkedin.com/")
//data driven from fixture
cy.get('#session_key ')
.type(this.signInData.email)

cy.get('# session_password').type(this.signInData.password)

1)
})s

Execution Results

The output is as follows:

tutorialspoint

EIMPLYEAGSY LEARMNING

81

Cypress

Chrome 5 being controlied by automated test software,

< Tesis v X 06.31 19 | iy 0 htps//www linkedin.comy
I cypress/integration/examples/ThirdTestspecjs Llnkedm
* Tutonalspoint Test
v 1

Welcome to your
professional
community

.'.i

Show

CEETTR

Forgot password?

#4310Nn passworag
S tA173 l a Signin

The output logs show the values abctest@gmail.com and Test@123 being fed to the Email
and Password fields respectively. These data have been passed to the test from the
fixtures.

get
|- tyve

FIT 090 20 0000 000

82

' tutorialspoint

EIMPLYEAGSY LEARMNING

28. Cypress — Prompt Pop-up Window

Cypress can handle prompt pop-up windows, where users can input values. A prompt has
a text field, where the input is taken. To handle a prompt pop-up, cy.window() method is
used.

It obtains the value of the object of the prompt (remote window). In a confirmation/alert
pop-up, we have to fire a browser event. But for prompt pop-up, we have to use cy.stub()
method.

Example

Let us look at the below example, on clicking the Click for JS Prompt button, a prompt pop
up gets displayed, as shown below:

JavaScript Alerts

Here are some examples of different JavaScript alerts which can be troublesome for automatior

Click for JS Alert

Click for JS Confirm

Click for JS Prompt

The following prompt with the user input field gets displayed. Tutorialspoint is entered in
the prompt pop-up, as shown below.

lam a JS prompt

|Tut0ria|spoinﬂ |

| OK || Cancel |

You entered: Tutorialspoint gets displayed under Result.

This can be seen in the screen displayed below:

83

' tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

JavaScript Alert

Here are some examples of d

Click for JS Alert

Click for JS Confirm

Click for JS Prompt

Result:

|!ou entered: Tutorialspoint

Implementation

Given below is an implementation of the commands for displaying prompt pop-up windows
in Cypress:

describe('Tutorialspoint Test', function () {
// test case
it("Scenario 1", function () {
//URL launch
cy.visit("https://the-internet.herokuapp.com/javascript_alerts")
//handling prompt alert
cy.window().then(function(p){
//stubbing prompt window
cy.stub(p, "prompt").returns("Tutorialspoint");
// click on Click for JS Prompt button
cy.get(':nth-child(3) > button').click()

// verify application message on clicking on OK

cy.get('#result').contains('You entered: Tutorialspoint')
1
})s

Execution Results
84

' tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

The output is as follows:

< Tess v x 01.38 »] o Q 1SN NIImNEt Necoh a0 D, COMV OvamC Hit_oée

cypressAntegrationdesampless xTest apec ix

Tutonatspoint Test

-

JavaScript Alerts

Here are same examples of differant JavaScript alerts which can be troublesome for automation

— Ciick for 35 Confirm
ot th-child (3] » bxtton
® Click for J5 Prompt

wontalee o tarat-—Tieris

Result:

You entared: Tutonalspomnt

The output logs show the successful verification of the text.

You entered: Tutorialspoint, is produced on clicking OK button on prompt pop up. Also,
the stub applied on the prompt window is visible on the output log.

85

' tutorialspoint

EIMPLYEAGSY LEARMNING

29. Cypress — Dashboards

Cypress Dashboard Service has to be set up to create a link between Cypress tests running
in our system and the dashboard which is hosted on the cloud.

Features

The features of Cypress Dashboard are explained below:

It provides data on the total number of passed, failed and skipped test cases.
The stack trace and screenshots of the failed tests are available.

The video of test execution is available.

Management of test data, framework and their access is possible.

The usage trends in the organization is provided.

Setup Cypress Dashboard

To set up the process, first, we should go to the Runs tab in the Cypress Test Runner
window. Then, click on Connect to Dashboard. The following screen will appear:

File Edit View Window Help

CypressAutomation © Support = Docs - Login

<> Tests m & Settings € Chrome 86 v

v Passed test

v Failed test

v Passed test

You could see test recordings here!

Connect to Cypress Dashboard for free:

« Record test runs in Cl and debug failed tests with ease
« Understand the health of your tests with test analytics
« Improve testing efficiency with parallelization, load balancing, and more

IRy
Connect to Dashboard

After logging in, you'll see recorded test runs here and in your Cypress Dashboard.

We shall get various options of logging on to the Dashboard, as shown below:

86

EIMPLYEAGSY LEARMNING

@ tutorialspoint

Cypress

@ Cypress.io X

¢ @

L7 N e ¢

d.cypress.io/test-ri

Login

€) Loginwith GitHub

@)press

The web has evolved. Finally, testing has too.

@

¢” | Loginwith SSO

(]

Log in with Email

Don't have an account? Sign up

After successful sign in, we shall get the success message. Click on Continue.

/RSN e sktop /CypressAutomation

File Edit View Window Help

v Login Successful

You are now logged in as

Enter the project name, owner and users, who can see the project.

Then, click on Set up project.

87

w \tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

Set up project

What's the name of the project?

CypressAutomation

Who should own this project? @ Manage organizations

Your personal organization

Who should see the runs and recordings? @&

() @® Public: Anyone has access.

@ & Private: Only invited users have access.

Set up project

Cypress shall then give the following suggestions:

e project Id

e unique project key (in form of command to be executed in terminal)

CypressAutomation © Support

> Tests 8 Runs © Settings @ Chrome 86 «

To record your first run...

1. Check cypress.json file into source control Owny? s

"projectId”: “fvbpxy"

S run --record --key 6ce8c137-3bla-4dd9-8394-a706dcc35d86

The projectld obtained from the Cypress suggestion should match with the project id
available in the cypress.json file within the project folder.

88

w \tutorialspoint

EIMPLYEAEGBYLEARNINTIG

Cypress

{} cypress.json X

v OPEN EDITORS

X {} cypress.json

~ CYPRESSAUTOMATION "projectId”:

}

v Cypress
> fixtures
> integration / examples
> plugins
> support

> videos

1} package~lock.an

{} package.json

Next, we have to run the below mentioned command as suggested by Cypress:

node_modules/cypress/bin/cypress run --record --key <project key>

The screen given below will appear:

{Run_Starting)

Once the execution is done, we have to open the Runs tab of the Test Runner. It has the
information on platform, browser, and duration of the tests.

The test records shall be visible. Click on a record.

<[> Tests £ Runs & Settings @ Chrome 86 v
Runs ed: 4:20:5 (% See all runs £
0#1 T X 01:41) v X

The record is opened in a browser, with the test result Overview (count of passed, failed,
pending, skipped), as shown below.

89

w \tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

(CRRN] O & nu i cypress.io ects/fvbpxy verview S B+ n O &
‘ Your personal orga... €) Nocommit message available *** @0 O v5 x1
Overview Test Results 8 Specs 8

» CypressAutomation
tView ol ot
Summary
Latest runs
Analytics
Run status ® Passed 3
Run duration ® Failed 3
Test suite size @ Pending 0
Top failures Skipped 0
Total 8

In the Specs tab, we should have the details of each test and its result.

Additionally, there are features like output, failed test screenshot, videos, and so on.

- Sl B Aot 0 | T -

T - =
H on) l 3 b
o o
- . s
I = 2 >

=
n p———] R8¢
I = R b
W Pl 3
a = = R & b
ﬂ . = > ,%
. 2

90

w \tutorialspoint

EIMPLYEAEGBYLEARNINTIG

30. Cypress — Screenshots and Videos

Cypress can work on screenshots and videos. First, let us understand how Cypress can
help in capturing the screenshot.

Screenshots

We can capture both the complete page and particular element screenshot with the
screenshot command in Cypress.

In addition to that Cypress has the in-built feature to capture the screenshots of failed
tests. To capture a screenshot of a particular scenario, we use the command screenshot.

Screenshot Implementation

The implementation of the screenshot commands in Cypress is as follows:

describe('Tutorialspoint Test', function () {
// test case
it("Scenario 1", function () {

//URL launched
cy.visit("https://the-internet.herokuapp.com/javascript_alerts")
//complete page screenshot with filename - CompletePage
cy.screenshot('CompletePage')

//screenshot of particular element
cy.get(':nth-child(2) > button').screenshot()

})s

1)

Execution Results

The output is given below:

cypress/integration/examples/SixTest.opecs

- JavaScript Alerts
Tutoricispoint Test
AT AR NI STty of e BRSOt Aas WhRD Can e ToURsOne Ny e

v Scenorn

viait Mtpaz//the-internet hergkuspp. con/ javascript slerty e

°

- screanshot ConplutePage

get 1thenita (2 DUt

=screanshet Result:

The execution logs show that complete full page screenshot captured (with filename as
CompletePage.png) and also screenshot a particular element (Click for JS Confirm).

91

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

These screenshots got captured inside the screenshots folder (in the plugins folder) within
the project. The location where the screenshots got captured, can be modified by changing
the Global configurations.

CompletePage.png file created for full page image.

JavaScript Alerts

Result

The screenshot of the button Click for JS Confirm got captured.

Tutoriaispoint Test -~ Sce

In the Test Runner Settings tab, the parameter screenshotOnRunFailure, set to true value
by default. Due to which, the screenshots are always captured for failure tests.

Also, the screenshotsFolder parameter has the value cypress/screenshots value. So, the
screenshots are captured within the screenshots folder.

92

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

Cypress

CypressAutomation

</> Tests 2 Runs & Settings

R T O B U T T a s
hosts: null

ignoreTestFiles: "*.hot-update.js"
includeShadowDom: false
integrationFolder: "cypress/integration”
modifyObstructiveCode: true

nodeVersion: "default”
numTestsKeptInMemory: 50
pagelLoadTimecut: 60006

pluginsFile: "cypress/plugins”

port: null

projectId: "fvbpxy"

reporter: "spec"

reporterOptions: null

requestTimeout: 5000

responseTimeout: 30600

v

retries: runMode, openMode
screenshotOnRunFailure: true
screenshotsFolder: "cypress/screenshots"”

suppertFile: "cypress/support"
taskTimeout: 60000

TESTEIles: Nesgs wb
trashAssetsBeforeRuns: true
userAgent: null

video: true

videoCompression: 32
videosFolder: "cypress/videos"

vidanllnl AadNnDaccac: trua

To disable feature of capturing failed screenshots, we have to add the below values in the
cypress.json file:

Cypress.Screenshot.defaults({

screenshotOnRunFailure: false

1)

Videos

The video capturing of Cypress is turned on for tests, by default. They are stored in the
videos folder within the project.

Once a Cypress test is run with the below mentioned command:

node_modules/.bin/cypress run

We get the console message along with the location of the video, compression details, and
so on:

93

w \tutorialspoint

EIMPLYEAEGBYLEARNINTIG

Cypress

Compression progress:

We get the corresponding video in the same location within the project.

CYPRESSAUTOMATION

2 SixTest.spec.js.mp4

To disable the video capture feature, we have to add the below value in the cypress.json
file:

"video": false

94

m tutorialspoint

31. Cypress — Debugging

Cypress has a very good debugging feature, where we can time travel and see what has
actually happened during the test execution. This can be done by hovering the mouse over
the Test Runner logs.

As we move through the steps in the Test Runner window, the elements get highlighted.
We can also use the Cypress command pause. This pauses the execution, during which
we can debug the previous steps. After that, we can again resume execution.

Implementation

The implementation of commands for debugging in Cypress is as follows:

describe('Tutorialspoint Test', function () {

// test case

it('Scenario 1', function (){
// launch the application
cy.visit("https://accounts.google.com");
// enable cookie logging
Cypress.Cookies.debug(true)
cy.getCookies

//pause execution

cy.pause()
cy.setCookie('cookiel', 'valuel')
})s

})s

Execution Results

The output is as follows:

Ol | W N 06.68 Bl Pl M © ttosdwwwgoogiecom
cypressfintegration/examples/ThirdTestspec js MNoss Sk
Tutotialspoint Test
Q Scarn
vinit htips W, google , con
B

getCookins
3

y Groge % e L
: Betwd Be wram Owrmt fud e L mpmaiyw (4 A damw

95

w tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

The output logs show that the execution has been paused (denoted by Paused button).

Then again, we can resume it after debugging the previous steps by clicking the Resume
button (appear beside Paused button).

< Tests v x 20.51 I

Tutoricispaint Test

getisakies

pause

The output logs now have all the steps executed after resume from pause.

If we open the Developer Console (pressing F12) on the browser, and select a step from
the Test Runner, the Console shall show the Command used and the valued Yielded.

For example, for the setCookie step, the Console shows Command: setCookie and Yielded
shows the cookie name: cookiel and value: valuel.

¢ Tesis v x 2 1 c) . WW.0000 ~ » O

Tutorarspoint Test

2 _asitackis

96

I@A‘ \tutorialspoint

EIMPLYEAEGBYLEARNINTIG

32. Cypress — Custom Commands

Cypress custom commands are described by users and not the default commands from
Cypress. These customized commands are used to create the test steps that are repeated
in an automation flow.

We can add and overwrite an already pre-existing command. They should be placed in the
commands.js file within the support folder present in the Cypress project.

CYPRESSAUTOMATION

tion / examples

s commands.js |

Syntax

The syntax for the custom commands in Cypress is as follows:

Cypress.Commands.add(function-name, func)

Cypress.Commands.add(function-name, opts, func)

Cypress.Commands.overwrite(function-name, func)

Here,

e function-name is the command that is being added/overwritten.

¢ func is the function passing that gets arguments passed to command.

e opts is used to pass an option to describe the implicit characteristics of custom
command. It is also used to determine how to handle a prior yielded subject (only
applicable to Cypress.Commands.add()) and default value of option is false. The
option prevSubject accepts false to ignore prior subjects, accepts true to accept
prior subject and accepts optional to either begin a chain or utilize a pre-existing

chain. An option accepts string, array, or Boolean.

97

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

Implementation of custom command

Given below is the implementation of custom command in commands.js

Cypress.Commands.add("userInput”, (searchTxt) => {
//to input search text in Google and perform search
cy.get("input[type="text']").type(searchTxt);

cy.contains("Google Search").click();

})s

Implementation of Actual Test

Given below is the implementation of actual test in Cypress with custom command:

describe('Tutorialspoint Test', function () {
// test case
it('Test Case 6', function (){
// launch the application
cy.visit("https://www.google.com/");
//custom parent command
cy.userInput('Java')
})s
3

Execution Results

The output is as follows:

< v x (1 c o I
visit 1 . T r - M 200k
@ —
o
ge? ‘—'__—‘l
WAYW VA oam
Java | Oracle
© i RPN
i slaned w Java oday
. |
© Download Jav
o] Vhatia Java? Java silow TP
° ‘l kg games, chart with lay
contains More resuls Fom @vs com »
~elick
What Is Java used for?
» What Java means?
b 1% Java sull sate?

98

w tutorialspoint

Cypress

The output logs show the custom command - userInput (having get, type and click
commands) getting executed.

It is recommended that a custom command should not be too lengthy. It should be brief,
because, adding too many actions within a custom command tends to show the execution.

99

w \tutorialspoint

EIMPLYEAEGBYLEARNINTIG

33. Cypress — Fixtures

Cypress fixtures are added to maintain and hold the test data for automation. The fixtures
are kept inside the fixtures folder (example.json file) in the Cypress project. Basically, it
helps us to get the data input from external files.

CYPRESSAUTOMATION

v fixtures

Cypress fixtures folder can have files in JSON or other formats and the data is maintained
in "key:value" pairs.

All the test data can be utilised by more than one test. All fixture data has to be declared
within the before hook block.

Syntax

The syntax for Cypress data driven testing is as follows:

cy.fixture(path of test data)

cy.fixture(path of test data, encoding type)
cy.fixture(path of test data, opts)

cy.fixture(path of test data, encoding type, options)

Here,

o path of test data is the path of test data file within fixtures folder.
¢ encoding type: Encoding type (utf-8, asci, and so on) is used to read the file.
e Opts: Modifies the timeout for response. The default value is 30000ms. The wait

time for cy.fixture(), prior throws an exception.

Implementation in example.json

Given below is the implementation of data driven testing with example.json in Cypress:

100

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

"fullName": "Robert",
"number": "789456123"

Implementation of Actual Test

The implementation of actual data driven testing in Cypress is as follows:

describe('Tutorialspoint Test', function () {
//part of before hook
before(function(){
//access fixture data
cy.fixture('example').then(function(regdata){
this.regdata=regdata

1)
1}

// test case
it('Test Casel’', function (){
// launch URL

cy.visit("https://register.rediff.com/register/register.php")
//data driven from fixture
cy.get(':nth-child(3) > [width="185"] > input')
.type(this.regdata.fullName)
cy.get('#mobno').type(this.regdata.number)

1)
})s

Execution Results

The output is as follows:

Create a Rediffmail account

Titonatspoint Test Futl N Aoben

POOS b Rl 1L

Creck avaiabiny

O red fMmiel com

The output logs show the values Robert and 789456123 being fed to the Full Name and
Mobile No. fields respectively. This data has been passed to the test from the fixtures.

tutorialspoint

EIMPLYEAGSY LEARMNING

101

34. Cypress — Environment Variables

We can define environment variables that can be globally declared for the test automation
framework and all the test cases can access it. This type of customized environment
variable can be stored in the cypress.json file within our project.

v CYPRESSAUTOMATION

Since, a customized variable is not exposed by default configurations from Cypress, we
have to mention the key as "evn" in the cypress.json file and then, set the value.

Also, to access this variable in the actual test, we have to use the Cypress.env and pass
the value declared in the json file.

Implementation in cypress.json

The implementation of commands for environment variables in cypress.json format is as
follows:

{
"projectId": "fvbpxy",
"enV" .
{
"url" : "https://www.google.com/"
}
}

Implementation of Actual Test

The implementation of actual test for environmental variables in Cypress is as follows:

describe('Tutorialspoint Test', function () {
// test case

it('Scenario 1', function (){

102

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

// launch application from environment variable
cy.visit(Cypress.env('url'))
cy.getCookies()
cy.setCookie('cookiel', 'valuel')
1
1)

Execution Results

The output is as follows:

Tutorialspoint Test

getCookies

setlonkin

The output logs show the URL launched which has been set as a customized environment
variable from the cypress.json file.

Configure Environment Variables

We can configure or modify the environment values from the command line with the flag
--env.

To run a particular file (for example: Testl.js) with URL: https://accounts.google.com in
a headed mode, the command shall be as follows:

./node_modules/.bin/cypress run --spec cypress/integration/examples/Testl.js --
env url=https://accounts.google.com -headed

If we have a value set for the environment variable url in the cypress.json file, which is
different from the value set from the command line, Cypress shall give preference to the
value set from the command line.

103

m tutorialspoint

35. Cypress — Hooks

Cypress Hooks are used to carry out the certain operations prior/post every/each test.
Some of the common hooks are as follows:

e before: It is executed, once the prior execution of any tests within a describe block
is carried out.

o after: It is executed, once the post execution of all the tests within a describe block
is carried out.

e beforeEach: It is executed prior to the execution of an individual, it blocks within
a describe block.

e afterEach: It is executed post execution of the individual, it blocks within a

describe block.

Implementation

The implementation of commands for the Cypress Hooks is explained below:

describe('Tutorialspoint', function() {

before(function() {
// executes once prior all tests in it block
cy.log("Before hook")

}

after(function() {
// executes once post all tests in it block
cy.log("After hook")

}

beforeEach(function() {
// executes prior each test within it block
cy.log("BeforeEach hook")

})

afterkach(function() {
// executes post each test within it block
cy.log("AfterEac hook")

b

it('First Test', function() {

cy.log("First Test")
}

104

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

it('Second Test', function() {
cy.log("Second Test")

1)
})

Execution Results

The output is mentioned below:

Tutorialspoint

L fistTesi]
log Befor
log BeforeEach hook
log F T
log AfterEac hook
log BeforekEach hook
log Second Test
log AfterEac hook
log After hoo
log After hool

The output logs show that the first executed step is the BEFORE ALL.

The last executed step is the AFTER ALL. Both of them ran only once.

The step executed under BEFORE EACH ran twice (before each TEST BODY).
Also, step executed under AFTER EACH ran twice (after each TEST BODY).

Both the it blocks are executed in order, in which they are implemented.

TAG

Apart from hooks, Cypress has tags - .only and .skip.

105

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

Cypress

While the .only tag is utilised to execute the it block to which it is tagged, the .skip tag is
utilised to exclude the it block to which it is tagged.

Implementation with .only

The implementation of .only tag in Cypress is as follows:

describe('Tutorialspoint', function()
//it block with tag .only
it.only('First Test', function() {
cy.log("First Test")
}
//it block with tag .only
It.only('Second Test', function() {
cy.log("Second Test")
}
it('Third Test', function() {
cy.log("Third Test")
b
})

Execution Results

The output is given below:

€ Tests v 2 X- 00.48
cypress/integration/examples/FirstTest.spe
Tutorialspoint
v First Test

log T
v S nd Test
log Second Test

C.JS

The output logs show that the it blocks (First and Second Test) with the .only tags only

got executed.

Implementation with .skip

The implementation of .skip tag in Cypress is as follows:

w \tutorialspoint

EIMPLYEAGSY LEARMNING

106

Cypress

describe('Tutorialspoint', function()
it('First Test', function() {
cy.log("First Test")
}
it('Second Test', function() {
cy.log("Second Test")
}
//it block with tag .skip
it.skip('Third Test', function() {
cy.log("Third Test")
}
})

Execution Results

The output is as follows:

{Tests V2 X-— 00.54 1 A

cypress/integration/examples/FirstTest.spec.js

Tutorialspoint

v First Test

log First Test
. nd Test

log Second Test

The output logs show that the it block (Third Test) with the .skip tag got skipped from the
execution.

107

m tutorialspoint

36. Cypress — Configuration of JSON File

Cypress configurations consist of some key-value pairs that are applicable to all tests
within a framework. Cypress default configurations are available under the Settings tab->
Configuration (expand it) in the Test Runner window.

CypressAutomation

</> Tests 2 Runs & Settings

~ Configuration

Your project's configuration is displayed below. A value can be set from the following sources:

default default values

config set from cypress.json file
envFile set from cypress.env.json
env set from environment variables
CLI set from CLI arguments
plugin set from plugin file

If we look further down in the same window, we shall have the existing values of multiple
configurations given by Cypress like the timeouts, environment variables, folder path, and
so on.

It is displayed below:

108

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

animationDistanceThreshold: 5
baseUrl: null
blockHosts: null

» browsers: Chrome, Firefox, Electron

chromeWebSecurity: true
compenentFolder: "cypress/component”
defaultCommandTimeout: 4600
downloadsFolder: "cypress/downloads”

»env: url

execTimeout: 60000
experimentalComponentTesting: false
experimentalFetchPolyfill: false
experimentalRunEvents: false
experimentalSourceRewriting: false
experimentalStudio: false
fileServerFolder: ""
firefoxGcInterval: runMode, openMode
fixturesFolder: "cypress/fixtures"
hosts: null

ignoreTestFiles: "*.hot-update.js"
includeShadowDom: false
integrationFolder: "cypress/integration”
medifyObstructiveCode: true
nodeVersion: "default"
numTestsKeptInMemory: 50
pageloadTimeout: 60000

pluginsFile: "cypress/plugins”
port: null

projectId: "fvbpxy"

reporter: "spec”

reporterOptions: null
requestTimeout: S000
responseTimecut: 30600

retries: runMode, openMode
screenshotOnRunFailure: true
screenshotsFolder: "cypress/screenshots”
supportFile: "cypress/support"”
taskTimeout: 60060

testFiless: "*8/%.%"
trashAssetsBeforeRuns: true
userAgent: null

There are few more configurations related to JavaScript Object Notation (JSON) file
Cypress and they are as follows:

Override Default values

LIgIIIASSCLOUTIUI TRULID .,
userAgent: null

video: true
videoCompression: 32
videosFolder: "cypress/videos"
videoUploadOnPasses: true
viewportHeight: 660
viewportWidth: 16800
waitForAnimations: true
scrollBehavior: "top"
watchForFileChanges: true

LI uT

To override the default configurations from the cypress.json file, we have to specify the

key-value pairs.

3

EIMPLYEAGSGSTYLE

109

tutorialspoint

ARMNINIEG

Cypress

v CYPRESSAUTOMATION
v Cypress

> fixtures

> integration / examples

> plugins

> screenshots

> support

> videos

> node_modules
{} cypress.json
{} package-lock.json

{} package.json

Implementation in cypress.json

The implementation for overriding the default values for JSON file is as follows:

"baseUrl"” : "https://www.google.com/"

Here, the key is baseUrl and the value is https://www.google.com/. Once the tests are
run again, the changes are reflected in the global configurations, as shown below:

CypressAutomation © Support

</> Tests 2 Runs & Settings

| * Configuration

configuration is displayed below. A value can be set from the following
default default values
config set from cypress.json file
envFile set from cypress.env.json
env set from environment variables
CLI set from CLI arguments
plugin set from plugin file

Lancelhrasbald s, 3

i
I
- |

"https://www,.google,.com/"
SR = =
s null

Implementation of Actual Test

The implementation of actual test for overriding default values of the JSON file is as
follows:

describe('Tutorialspoint', function () {

// test case

110

I@A‘ \tutorialspoint

EIMPLYEAEGBYLEARNINTIG

https://www.google.com/

Cypress

it('First Test', function (){
// launch application from configuration
cy.visit("/")
P
1)

Execution Results

The output is as follows:

Aintegrotion/exnmples/First Test spec.|s Abou

Tutorialspoint

Google

The execution logs show that the baseUrl has been obtained from the cypress.json file and
it is applicable to all tests within the framework.

Override Default configurations

We can override the default configurations from the test scripts, which become
applicable to an individual test step, within the test case and not to the complete
framework.

This is done with the help of the config command in Cypress.

For example, if we want to increase the default timeout for a particular test step,
implementation shall be as follows:

//set default time out to nine seconds from following steps in test
Cypress.config('defaultCommandTimeout"',9000)
landPage.selectUser().click()

Simultaneously if the defaultCommandTimeout value is set to seven seconds in the
cypress.json file, then Cypress shall give preference to the timeout applied to the test
step(i.e nine seconds).

Finally, it gives preference to the default configurations.

Disable Overriding Default configurations

We can disable the feature to override the default configurations from the cypress.json.

The configuration in cypress.json is as follows:

{
"defaultCommandTimeout"” : "9000"

111

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

To disable the above configuration, run the below mentioned command:

npx cypress open --config-file false

After running the above command, the Settings tab of the Test Runner window will show
the config flag set to false.

Also, defaultCommandTimeout is set to four seconds, which is set by the default
configuration and not overridden by cypress.json value of nine seconds.

CypressAutomation © Support = Docs

<> Tests £ Runs § Settings

|+ Configuration

Your project's configuration is displayed below. A value can be set from the following sources

default default values
config setfrom cypress.json file (currently disabled by --config-file false) l
envFile set from cypress.env.json
env set from environment variables
CLT set from CLI arguments
plugin set from plugin file
{

animationDistanceThreshold: 5
baseUrl: null
blockHosts: null
» browsers: chrome, Firefox, Electron
chromeWebSecurity: true
componentFolder: "cypress/component”
§ defaultCommandTimeout: 4600 §
downloadsFolder: "cypress/downloads”
env: null

112

@ tutorialspoint

EIMPLYEAGSY LEARMNING

37. Cypress — Reports

Cypress is bundled with Mocha. So, any reports that can be generated for Mocha, can also
be utilised with Cypress. In addition to that Cypress has other third party reporters like
JUnit and teamcity.

Mochawesome Report

The Mochawesome report is one of the most important reports in Cypress.

e To install mochawesome, run the command given herewith:

npm install mochawesome --save-dev

The following screen will appear on your computer:

e To install mocha, run the command mentioned below:

npm install mocha --save-dev

The following screen will appear on your computer:

B

¢ To merge mochawesome json reports, run the following command:

npm install mochawesome-merge --save-dev

The following screen will appear on your computer:

B

All these packages after installation, should get reflected on the package.json file.

113

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

To merge multiple reports in a single report, run the following command:

npm run combine-reports

Configurations in cypress.json file

In the cypress.json file, we can set the following configurations for the mochawesome
reports:

e overwrite: If its value is set to false, there should not be any overwriting from the
prior generated reports.

e reportDir: It is the location, where reports are to be saved.

e quiet: If its value is set to true, there should not be any Cypress related output.
Only the mochawesome output has to be printed.

o html: If its value is set to false, there should not be any generation of html reports
after execution.

e json: If its value is set to true, a json file with execution details will be generated.

Implementation in cypress.json

The implementation for mochawesome report in cypress.json is as follows:

{

"reporter": "mochawesome",
"reporterOptions”: {
"reportDir": "cypress/results”,
"overwrite": false,
"html": false,

"json": true

}

To generate a report for all specs in the integration folder of the Cypress project, run the
command given below:

npx cypress run

For running a particular test, run the following command:

npx cypress run --spec "<path of spec file>"

After the execution is completed, the mochawesome-report folder gets generated within
the Cypress project containing reports in html and json formats.

114

tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

CYPRESSAUTOMATICON

Right-click on the mochawesome.html report. Then, select the Copy Path option and open
the path copied on the browser.

‘ LS] LN 4l » e sl 1908 “w N nwoo

CypressAutomation

Tutorialspoint Test -
a 1

@ owbi 320

ey VAL Cyprome. o | 1)
oLtk e (

The mochawesome report gets opened with details of the execution results, duration, test
case name, test steps, and so on.

On clicking on the icon (highlighted in the above image) on the left upper corner of the
screen, more options are displayed.

L c @ i) Aley//home/osboxes/Desktop/CypressAutomation/mochawesome-repart/mochawesome html

CypressAutomation %
saturday, February 20, 2021 7:53m
" Show Passed .
Show Failed
Show Pending
show Skipped
Show Hooks P

/ Tutorialspoint Test

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

We can get the different views to select the passed, failed, pending, skipped test cases,
and the hooks applied to the test.

JUnit Report

Cypress provides one more type of report known as the JUnit report.

To install the package for JUnit report, run the command stated below:

npm install cypress-junit-reporter --save-dev

The following screen will appear on your computer:

Implementation in cypress.json

Given below is an implementation of JUnit report in cypress.json:

{
"reporter”: "junit",
"reporterOptions”: {
"mochaFile": "cypress/results/results.xml”,
"toConsole": true
}
}

If we run multiple tests in a run, and wish to have a unique report for the individual spec
files, we have to add [hash] in the mochaFile parameter in cypress.json.

Implementation to avoid overriding report

Following is an implementation in cypress.json to avoid an overriding report in Cypress:

{
"reporter”: "junit",
"reporterOptions”: {
"mochaFile": "cypress/results/results-[hash].xml",
"toConsole": true
}
}

116

m tutorialspoint

Cypress

To generate report for all specs in the integration folder of the Cypress project, run the
following command:

npx cypress run --reporter junit

The following screen will appear on your computer:

OPEN LOITORS T UNSAVED

ar

OMATION

After execution is completed, the results folder gets generated within the Cypress project
containing reports in xml format.

teamcity Report

Cypress provides one more type of report known as the teamcity report.

To install the package for teamcity report, run the following command:

npm install cypress-teamcity-reporter --save-dev

The following screen will appear on your computer:

To generate report for all specs in the integration folder of the Cypress project, run the
following command:

npx cypress run --reporter teamcity

The following screen will appear on your computer:

117

m tutorialspoint

Cypress

Runnin
##teamcd
#¥#teamcity sstStarted A Cenarlio

amclity| 2 i » e aCenarlo

amclity[testSuiteFinis d name='Tutorial

118

EIMPLYEAEGBYLEARNINTIG

J' tutorialspoint

38. Cypress — Plugins

Cypress has multiple plugins to add to its features. There are multiple types of plugins like
the authentication, component testing, custom commands, development tools and so on.

Some of the prominent plugins include:

To perform file upload task in Cypress, we have to first install a plugin with the
command mentioned below:

npm install -dev cypress-file-upload

Once the installation is done, we have to add the statement import 'cypress-file-upload' in
the command.js file, which resides inside the support folder within the Cypress project.

To work with frames, first, we have to install the Cypress plugin for frames with the
command given below:

npm install -D cypress-iframe

Then, we have to add the statement import 'cypress-iframe' in the code.

To identify elements with xpath locator, run the following command:

npm install cypress-xpath

Once the installation is done, we have to add the statement require ("cypress-xpath")
within the index.js file, which resides inside the support folder within the Cypress project.

Also, we have to use the cy.xpath command to identify elements.

To enable themes, we have to install a plugin with the command mentioned below:

npm install --save-dev cypress-dark

Once the installation is done, we have to add the statement require ("cypress-dark") within
the index.js file, which resides inside the support folder within the Cypress project.

119

@ tutorialspoint

EIMPLYEAGSY LEARMNING

39. Cypress — GitHub

To integrate Cypress with GitHub, we have to first install Cypress GitHub App. This can be
done either from the organization integration settings or from the project settings in the
Cypress Dashboard.

Installation

The installation of Cypress GitHub App can be done in two ways. They are explained below
in detail.

Installation via organization integration settings

Follow the steps mentioned below to install GitHub via organization integration settings:

¢ Navigate to the Dashboard Organization page.

e Choose an organization that you want to integrate with a GitHub account or
organization.

¢ Navigate to the chosen organization’s integration option from the navigation to the
side.

e Then, click the GitHub Integration button.

Installation via project settings

Follow the steps mentioned below to install GitHub via project settings:

e Choose organization inside organization switcher.

e Choose the project that you want to integrate with the repo in GitHub.
e Move to the Project settings page.

e Go to the GitHub Integration.

e Click on Install the Cypress GitHub App.

Once the GitHub App installation is done, we shall be directed to GitHub.com to proceed
with further steps, which are as follows:

e Choose the GitHub organization or account for integration with the organization
Cypress Dashboard.

e Next, we have to combine either all GitHub repositories or a particular repository
with the Cypress GitHub App.

e Click on the Install button to finish installation.

GitHub Integration Enabling

The process to enable the GitHub integration in Cypress is explained below:
120

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Cypress

e Move to the project settings page.

¢ Navigate to the GitHub Integration section, then click on Configure.

e Select a repository from GitHub to integrate with the project.

e As GitHub repo is connected to a Cypress project, the GitHub integration shall be

enabled.

121

m tutorialspoint

