
Deep Learning with Keras    

   i 

 

 



Deep Learning with Keras    

   ii 

 

About the Tutorial 

Deep Learning essentially means training an Artificial Neural Network (ANN) with a huge 

amount of data. In deep learning, the network learns by itself and thus requires 

humongous data for learning. In this tutorial, you will learn the use of Keras in building 

deep neural networks. We shall look at the practical examples for teaching. 

   

Audience 

This tutorial is prepared for professionals who are aspiring to make a career in the field of 

deep learning and neural network framework. This tutorial is intended to make you 

comfortable in getting started with the Keras framework concepts. 

 

Prerequisites 

Before proceeding with the various types of concepts given in this tutorial, we assume that 
the readers have basic understanding of deep learning framework. In addition to this, it will 
be very helpful, if the readers have a sound knowledge of Python and Machine Learning. 

 

 

Copyright & Disclaimer 

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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Deep Learning has become a buzzword in recent days in the field of Artificial Intelligence 

(AI). For many years, we used Machine Learning (ML) for imparting intelligence to 

machines. In recent days, deep learning has become more popular due to its supremacy 

in predictions as compared to traditional ML techniques.  

Deep Learning essentially means training an Artificial Neural Network (ANN) with a huge 

amount of data. In deep learning, the network learns by itself and thus requires 

humongous data for learning. While traditional machine learning is essentially a set of 

algorithms that parse data and learn from it. They then used this learning for making 

intelligent decisions.  

Now, coming to Keras, it is a high-level neural networks API that runs on top of TensorFlow 

- an end-to-end open source machine learning platform. Using Keras, you easily define 

complex ANN architectures to experiment on your big data. Keras also supports GPU, 

which becomes essential for processing huge amount of data and developing machine 

learning models.  

In this tutorial, you will learn the use of Keras in building deep neural networks. We shall 

look at the practical examples for teaching. The problem at hand is recognizing 

handwritten digits using a neural network that is trained with deep learning.  

Just to get you more excited in deep learning, below is a screenshot of Google trends on 

deep learning here: 

 

 
 

1. Deep Learning with Keras — Introduction 
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As you can see from the diagram, the interest in deep learning is steadily growing over 

the last several years. There are many areas such as computer vision, natural language 

processing, speech recognition, bioinformatics, drug design, and so on, where the deep 

learning has been successfully applied. This tutorial will get you quickly started on deep 

learning.  

 

So keep reading! 
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As said in the introduction, deep learning is a process of training an artificial neural network 

with a huge amount of data. Once trained, the network will be able to give us the 

predictions on unseen data. Before I go further in explaining what deep learning is, let us 

quickly go through some terms used in training a neural network.  

Neural Networks 

The idea of artificial neural network was derived from neural networks in our brain. A 

typical neural network consists of three layers — input, output and hidden layer as shown 

in the picture below.  

 

 
 

This is also called a shallow neural network, as it contains only one hidden layer. You add 

more hidden layers in the above architecture to create a more complex architecture.   

Deep Networks 

The following diagram shows a deep network consisting of four hidden layers, an input 

layer and an output layer.  

 

2. Deep Learning with Keras ― Deep Learning 



Deep Learning with Keras    

   4 

 

 
 

As the number of hidden layers are added to the network, its training becomes more 

complex in terms of required resources and the time it takes to fully train the network.   

Network Training 

After you define the network architecture, you train it for doing certain kinds of predictions. 

Training a network is a process of finding the proper weights for each link in the network. 

During training, the data flows from Input to Output layers through various hidden 

layers. As the data always moves in one direction from input to output, we call this network 

as Feed-forward Network and we call the data propagation as Forward Propagation.  

Activation Function 

At each layer, we calculate the weighted sum of inputs and feed it to an Activation 

function. The activation function brings nonlinearity to the network. It is simply some 

mathematical function that discretizes the output. Some of the most commonly used 

activations functions are sigmoid, hyperbolic, tangent (tanh), ReLU and Softmax.  

Backpropagation 

Backpropagation is an algorithm for supervised learning. In Backpropagation, the errors 

propagate backwards from the output to the input layer. Given an error function, we 

calculate the gradient of the error function with respect to the weights assigned at each 

connection. The calculation of the gradient proceeds backwards through the network. The 

gradient of the final layer of weights is calculated first and the gradient of the first layer 

of weights is calculated last.  

At each layer, the partial computations of the gradient are reused in the computation of 

the gradient for the previous layer. This is called Gradient Descent.  
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In this project-based tutorial you will define a feed-forward deep neural network and train 

it with backpropagation and gradient descent techniques. Luckily, Keras provides us all 

high level APIs for defining network architecture and training it using gradient descent. 

Next, you will learn how to do this in Keras.   

Handwritten Digit Recognition System 

In this mini project, you will apply the techniques described earlier. You will create a deep 

learning neural network that will be trained for recognizing handwritten digits. In any 

machine learning project, the first challenge is collecting the data. Especially, for deep 

learning networks, you need humongous data. Fortunately, for the problem that we are 

trying to solve, somebody has already created a dataset for training. This is called mnist, 

which is available as a part of Keras libraries. The dataset consists of several 28x28 pixel 

images of handwritten digits. You will train your model on the major portion of this dataset 

and the rest of the data would be used for validating your trained model.  

Project Description 

The mnist dataset consists of 70000 images of handwritten digits. A few sample images 

are reproduced here for your reference: 

 

 
Each image is of size 28 x 28 pixels making it a total of 768 pixels of various gray scale 

levels. Most of the pixels tend towards black shade while only few of them are towards 

white. We will put the distribution of these pixels in an array or a vector. For example, the 

distribution of pixels for a typical image of digits 4 and 5 is shown in the figure below.  
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Clearly, you can see that the distribution of the pixels (especially those tending towards 

white tone) differ, this distinguishes the digits they represent. We will feed this distribution 

of 784 pixels to our network as its input. The output of the network will consist of 10 

categories representing a digit between 0 and 9.  

Our network will consist of 4 layers — one input layer, one output layer and two hidden 

layers. Each hidden layer will contain 512 nodes. Each layer is fully connected to the next 

layer. When we train the network, we will be computing the weights for each connection. 

We train the network by applying backpropagation and gradient descent that we discussed 

earlier.  
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With this background, let us now start creating the project.  

Setting Up Project 

We will use Jupyter through Anaconda navigator for our project. As our project uses 

TensorFlow and Keras, you will need to install those in Anaconda setup. To install 

Tensorflow, run the following command in your console window: 

>conda install -c anaconda tensorflow 

To install Keras, use the following command: 

>conda install -c anaconda keras  

You are now ready to start Jupyter. 

Starting Jupyter 

When you start the Anaconda navigator, you would see the following opening screen.  

 

3. Deep Learning with Keras — Setting up 
Project 
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Click ‘Jupyter’ to start it. The screen will show up the existing projects, if any, on your 

drive. 

Starting a New Project 

Start a new Python 3 project in Anaconda by selecting the following menu option: 

File | New Notebook | Python 3 

The screenshot of the menu selection is shown for your quick reference: 

 
A new blank project will show up on your screen as shown below: 
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Change the project name to DeepLearningDigitRecognition by clicking and editing on 

the default name “UntitledXX”.  
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We first import the various libraries required by the code in our project.  

Array Handling and Plotting 

As typical, we use numpy for array handling and matplotlib for plotting. These libraries 

are imported in our project using the following import statements: 

import numpy as np 

import matplotlib 

import matplotlib.pyplot as plot 

Suppressing Warnings 

As both Tensorflow and Keras keep on revising, if you do not sync their appropriate 

versions in the project, at runtime you would see plenty of warning errors. As they distract 

your attention from learning, we shall be suppressing all the warnings in this project. This 

is done with the following lines of code: 

# silent all warnings 

import os 

os.environ['TF_CPP_MIN_LOG_LEVEL']='3' 

import warnings 

warnings.filterwarnings('ignore') 

from tensorflow.python.util import deprecation 

deprecation._PRINT_DEPRECATION_WARNINGS = False 

Keras 

We use Keras libraries to import dataset. We will use the mnist dataset for handwritten 

digits. We import the required package using the following statement: 

from keras.datasets import mnist 

We will be defining our deep learning neural network using Keras packages. We import 

the Sequential, Dense, Dropout and Activation packages for defining the network 

architecture. We use load_model package for saving and retrieving our model. We also 

use np_utils for a few utilities that we need in our project. These imports are done with 

the following program statements: 

from keras.models import Sequential, load_model 

from keras.layers.core import Dense, Dropout, Activation 

4. Deep Learning with Keras — Importing 
Libraries 
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from keras.utils import np_utils 

When you run this code, you will see a message on the console that says that Keras uses 

TensorFlow at the backend. The screenshot at this stage is shown here: 

 
Now, as we have all the imports required by our project, we will proceed to define the 

architecture for our Deep Learning network.  
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Our neural network model will consist of a linear stack of layers. To define such a model, 

we call the Sequential function: 

model = Sequential() 

Input Layer 

We define the input layer, which is the first layer in our network using the following 

program statement: 

model.add(Dense(512, input_shape=(784,))) 

This creates a layer with 512 nodes (neurons) with 784 input nodes. This is depicted in 

the figure below: 

 

 
 

Note that all the input nodes are fully connected to the Layer 1, that is each input node is 

connected to all 512 nodes of Layer 1.  

Next, we need to add the activation function for the output of Layer 1. We will use ReLU 

as our activation. The activation function is added using the following program statement: 

5. Deep Learning with Keras — Creating Deep 
Learning Model 
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model.add(Activation('relu')) 

Next, we add Dropout of 20% using the statement below. Dropout is a technique used to 

prevent model from overfitting. 

model.add(Dropout(0.2)) 

At this point, our input layer is fully defined. Next, we will add a hidden layer.  

Hidden Layer 

Our hidden layer will consist of 512 nodes. The input to the hidden layer comes from our 

previously defined input layer. All the nodes are fully connected as in the earlier case. The 

output of the hidden layer will go to the next layer in the network, which is going to be 

our final and output layer. We will use the same ReLU activation as for the previous layer 

and a dropout of 20%. The code for adding this layer is given here: 

model.add(Dense(512)) 

model.add(Activation('relu')) 

model.add(Dropout(0.2)) 

The network at this stage can be visualized as follows: 
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Next, we will add the final layer to our network, which is the output layer. Note that you 

may add any number of hidden layers using the code similar to the one which you have 

used here. Adding more layers would make the network complex for training; however, 

giving a definite advantage of better results in many cases though not all.  

Output Layer 

The output layer consists of just 10 nodes as we want to classify the given images in 10 

distinct digits. We add this layer, using the following statement: 

model.add(Dense(10)) 

As we want to classify the output in 10 distinct units, we use the softmax activation. In 

case of ReLU, the output is binary. We add the activation using the following statement: 

model.add(Activation('softmax')) 

At this point, our network can be visualized as shown in the below diagram: 

 

 
 

At this point, our network model is fully defined in the software. Run the code cell and if 

there are no errors, you will get a confirmation message on the screen as shown in the 

screenshot below:  
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Next, we need to compile the model.  
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The compilation is performed using one single method call called compile. 

model.compile(loss='categorical_crossentropy', metrics=['accuracy'], 

optimizer='adam') 

The compile method requires several parameters. The loss parameter is specified to have 

type 'categorical_crossentropy'. The metrics parameter is set to 'accuracy' and finally 

we use the adam optimizer for training the network. The output at this stage is shown 

below: 

 
Now, we are ready to feed in the data to our network.  

Loading Data 

As said earlier, we will use the mnist dataset provided by Keras. When we load the data 

into our system, we will split it in the training and test data. The data is loaded by calling 

the load_data method as follows: 

(X_train, y_train), (X_test, y_test) = mnist.load_data() 

The output at this stage looks like the following: 

 
 

Now, we shall learn the structure of the loaded dataset. 

Examining Data Points 

The data that is provided to us are the graphic images of size 28 x 28 pixels, each 

containing a single digit between 0 and 9. We will display the first ten images on the 

console. The code for doing so is given below: 

# printing first 10 images 

for i in range(10): 

 

6. Deep Learning with Keras — Compiling the 
Model 
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  plot.subplot(3,5,i+1) 

  plot.tight_layout() 

  plot.imshow(X_train[i], cmap='gray', interpolation='none') 

  plot.title("Digit: {}".format(y_train[i])) 

  plot.xticks([]) 

  plot.yticks([]) 

) 

In an iterative loop of 10 counts, we create a subplot on each iteration and show an image 

from X_train vector in it. We title each image from the corresponding y_train vector. 

Note that the y_train vector contains the actual values for the corresponding image in 

X_train vector. We remove the x and y axes markings by calling the two methods xticks 

and yticks with null argument. When you run the code, you would see the following 

output: 

 

 
 

Next, we will prepare data for feeding it into our network.  
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Before we feed the data to our network, it must be converted into the format required by 

the network. This is called preparing data for the network. It generally consists of 

converting a multi-dimensional input to a single-dimension vector and normalizing the 

data points.  

Reshaping Input Vector 

The images in our dataset consist of 28 x 28 pixels. This must be converted into a single 

dimensional vector of size 28 * 28 = 784 for feeding it into our network. We do so by 

calling the reshape method on the vector.  

X_train = X_train.reshape(60000, 784) 

X_test = X_test.reshape(10000, 784) 

Now, our training vector will consist of 60000 data points, each consisting of a single 

dimension vector of size 784. Similarly, our test vector will consist of 10000 data points 

of a single-dimension vector of size 784.  

Normalizing Data 

The data that the input vector contains currently has a discrete value between 0 and 255 

- the gray scale levels. Normalizing these pixel values between 0 and 1 helps in speeding 

up the training. As we are going to use stochastic gradient descent, normalizing data will 

also help in reducing the chance of getting stuck in local optima.  

To normalize the data, we represent it as float type and divide it by 255 as shown in the 

following code snippet: 

X_train = X_train.astype('float32') 

X_test = X_test.astype('float32') 

X_train /= 255 

X_test /= 255 

Let us now look at how the normalized data looks like. 

Examining Normalized Data 

To view the normalized data, we will call the histogram function as shown here: 

plot.hist(X_train[0]) 

plot.title("Digit: {}".format(y_train[0])) 

Here, we plot the histogram of the first element of the X_train vector. We also print the 

digit represented by this data point. The output of running the above code is shown here: 

7. Deep Learning with Keras ― Preparing Data 
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You will notice a thick density of points having value close to zero. These are the black dot 

points in the image, which obviously is the major portion of the image. The rest of the 

gray scale points, which are close to white color, represent the digit. You may check out 

the distribution of pixels for another digit. The code below prints the histogram of a digit 

at index of 2 in the training dataset.  

plot.hist(X_train[2]) 

plot.title("Digit: {}".format(y_train[2]) 

The output of running the above code is shown below: 
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Comparing the above two figures, you will notice that the distribution of the white pixels 

in two images differ indicating a representation of a different digit - “5” and “4” in the 

above two pictures.  

Next, we will examine the distribution of data in our full training dataset.  

Examining Data Distribution 

Before we train our machine learning model on our dataset, we should know the 

distribution of unique digits in our dataset. Our images represent 10 distinct digits ranging 

from 0 to 9. We would like to know the number of digits 0, 1, etc., in our dataset. We can 

get this information by using the unique method of Numpy.  

Use the following command to print the number of unique values and the number of 

occurrences of each one: 

print(np.unique(y_train, return_counts=True)) 

When you run the above command, you will see the following output: 

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8), array([5923, 6742, 5958, 

6131, 5842, 5421, 5918, 6265, 5851, 5949])) 

It shows that there are 10 distinct values — 0 through 9. There are 5923 occurrences of 

digit 0, 6742 occurrences of digit 1, and so on. The screenshot of the output is shown 

here: 

 
 

As a final step in data preparation, we need to encode our data.  

Encoding Data 

We have ten categories in our dataset. We will thus encode our output in these ten 

categories using one-hot encoding. We use to_categorial method of Numpy utilities to 

perform encoding. After the output data is encoded, each data point would be converted 

into a single dimensional vector of size 10. For example, digit 5 will now be represented 

as [0,0,0,0,0,1,0,0,0,0].  

Encode the data using the following piece of code:  

n_classes = 10 

Y_train = np_utils.to_categorical(y_train, n_classes) 

You may check out the result of encoding by printing the first 5 elements of the categorized 

Y_train vector.  

Use the following code to print the first 5 vectors:  
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for i in range(5): 

 

    print (Y_train[i]) 

You will see the following output: 

[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.] 

[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.] 

[0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] 

[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] 

The first element represents digit 5, the second represents digit 0, and so on.  

Finally, you will have to categorize the test data too, which is done using the following 

statement: 

Y_test = np_utils.to_categorical(y_test, n_classes) 

At this stage, your data is fully prepared for feeding into the network.  

Next, comes the most important part and that is training our network model.  
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The model training is done in one single method call called fit that takes few parameters 

as seen in the code below: 

history = model.fit(X_train, Y_train, 

          batch_size=128, epochs=20, 

          verbose=2, 

          validation_data=(X_test, Y_test))) 

The first two parameters to the fit method specify the features and the output of the 

training dataset. 

The epochs is set to 20; we assume that the training will converge in max 20 epochs - 

the iterations. The trained model is validated on the test data as specified in the last 

parameter.  

The partial output of running the above command is shown here: 

Train on 60000 samples, validate on 10000 samples 

Epoch 1/20 

 - 9s - loss: 0.2488 - acc: 0.9252 - val_loss: 0.1059 - val_acc: 0.9665 

Epoch 2/20 

 - 9s - loss: 0.1004 - acc: 0.9688 - val_loss: 0.0850 - val_acc: 0.9715 

Epoch 3/20 

 - 9s - loss: 0.0723 - acc: 0.9773 - val_loss: 0.0717 - val_acc: 0.9765 

Epoch 4/20 

 - 9s - loss: 0.0532 - acc: 0.9826 - val_loss: 0.0665 - val_acc: 0.9795 

Epoch 5/20 

 - 9s - loss: 0.0457 - acc: 0.9856 - val_loss: 0.0695 - val_acc: 0.9792 

The screenshot of the output is given below for your quick reference: 

 

8. Deep Learning with Keras — Training the 
Model 
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Now, as the model is trained on our training data, we will evaluate its performance.  
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To evaluate the model performance, we call evaluate method as follows: 

loss_and_metrics = model.evaluate(X_test, Y_test, verbose=2) 

We will print the loss and accuracy using the following two statements: 

print("Test Loss", loss_and_metrics[0]) 

print("Test Accuracy", loss_and_metrics[1]) 

When you run the above statements, you would see the following output: 

Test Loss 0.08041584826191042 

Test Accuracy 0.9837 

This shows a test accuracy of 98%, which should be acceptable to us. What it means to 

us that in 2% of the cases, the handwritten digits would not be classified correctly. We will 

also plot accuracy and loss metrics to see how the model performs on the test data.  

Plotting Accuracy Metrics 

We use the recorded history during our training to get a plot of accuracy metrics. The 

following code will plot the accuracy on each epoch. We pick up the training data accuracy 

(“acc”) and the validation data accuracy (“val_acc”) for plotting.  

plot.subplot(2,1,1) 

plot.plot(history.history['acc']) 

plot.plot(history.history['val_acc']) 

plot.title('model accuracy') 

plot.ylabel('accuracy') 

plot.xlabel('epoch') 

plot.legend(['train', 'test'], loc='lower right') 

The output plot is shown below: 

 

9. Deep Learning with Keras ― Evaluating Model 
Performance 
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As you can see in the diagram, the accuracy increases rapidly in the first two epochs, 

indicating that the network is learning fast. Afterwards, the curve flattens indicating that 

not too many epochs are required to train the model further. Generally, if the training data 

accuracy (“acc”) keeps improving while the validation data accuracy (“val_acc”) gets 

worse, you are encountering overfitting. It indicates that the model is starting to memorize 

the data. 

We will also plot the loss metrics to check our model’s performance.  

Plotting Loss Metrics 

Again, we plot the loss on both the training (“loss”) and test (“val_loss”) data. This is done 

using the following code: 

plot.subplot(2,1,2) 

plot.plot(history.history['loss']) 

plot.plot(history.history['val_loss']) 

plot.title('model loss') 

plot.ylabel('loss') 

plot.xlabel('epoch') 

plot.legend(['train', 'test'], loc='upper right') 

The output of this code is shown below: 
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As you can see in the diagram, the loss on the training set decreases rapidly for the first 

two epochs. For the test set, the loss does not decrease at the same rate as the training 

set, but remains almost flat for multiple epochs. This means our model is generalizing well 

to unseen data.  

Now, we will use our trained model to predict the digits in our test data.  
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To predict the digits in an unseen data is very easy. You simply need to call the 

predict_classes method of the model by passing it to a vector consisting of your 

unknown data points.  

predictions = model.predict_classes(X_test) 

The method call returns the predictions in a vector that can be tested for 0’s and 1’s 

against the actual values. This is done using the following two statements: 

correct_predictions = np.nonzero(predictions == y_test)[0] 

incorrect_predictions = np.nonzero(predictions != y_test)[0] 

Finally, we will print the count of correct and incorrect predictions using the following two 

program statements: 

print(len(correct_predictions)," classified correctly") 

print(len(incorrect_predictions)," classified incorrectly") 

When you run the code, you will get the following output: 

9837  classified correctly 

163  classified incorrectly 

Now, as you have satisfactorily trained the model, we will save it for future use.  

10. Deep Learning with Keras ― Predicting on 
Test Data 
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We will save the trained model in our local drive in the models folder in our current 

working directory. To save the model, run the following code: 

directory = "./models/" 

name = 'handwrittendigitrecognition.h5' 

path = os.path.join(save_dir, name) 

model.save(path) 

print('Saved trained model at %s ' % path) 

The output after running the code is shown below: 

 
Now, as you have saved a trained model, you may use it later on for processing your 

unknown data.  

11. Deep Learning with Keras ― Saving Model 
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To predict the unseen data, you first need to load the trained model into the memory. This 

is done using the following command: 

model = load_model ('./models/handwrittendigitrecognition.h5') 

Note that we are simply loading the .h5 file into memory. This sets up the entire neural 

network in memory along with the weights assigned to each layer.  

Now, to do your predictions on unseen data, load the data, let it be one or more items, 

into the memory. Preprocess the data to meet the input requirements of our model as 

what you did on your training and test data above. After preprocessing, feed it to your 

network. The model will output its prediction.  

12. Deep Learning with Keras ― Loading Model 
for Predictions 
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Keras provides a high level API for creating deep neural network. In this tutorial, you 

learned to create a deep neural network that was trained for finding the digits in 

handwritten text. A multi-layer network was created for this purpose. Keras allows you to 

define an activation function of your choice at each layer. Using gradient descent, the 

network was trained on the training data. The accuracy of the trained network in predicting 

the unseen data was tested on the test data. You learned to plot the accuracy and error 

metrics. After the network is fully trained, you saved the network model for future use. 

 

 

13. Deep Learning with Keras ― Conclusion 


