
Deep Learning with Keras

 i

Deep Learning with Keras

 ii

About the Tutorial

Deep Learning essentially means training an Artificial Neural Network (ANN) with a huge

amount of data. In deep learning, the network learns by itself and thus requires

humongous data for learning. In this tutorial, you will learn the use of Keras in building

deep neural networks. We shall look at the practical examples for teaching.

Audience

This tutorial is prepared for professionals who are aspiring to make a career in the field of

deep learning and neural network framework. This tutorial is intended to make you

comfortable in getting started with the Keras framework concepts.

Prerequisites

Before proceeding with the various types of concepts given in this tutorial, we assume that
the readers have basic understanding of deep learning framework. In addition to this, it will
be very helpful, if the readers have a sound knowledge of Python and Machine Learning.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Deep Learning with Keras

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. Deep Learning with Keras — Introduction .. 1

2. Deep Learning with Keras ― Deep Learning .. 3

Neural Networks .. 3

Deep Networks .. 3

Network Training ... 4

Handwritten Digit Recognition System ... 5

Project Description .. 5

3. Deep Learning with Keras — Setting up Project .. 7

Setting Up Project .. 7

Starting Jupyter ... 7

Starting a New Project ... 8

4. Deep Learning with Keras — Importing Libraries .. 10

Array Handling and Plotting .. 10

Suppressing Warnings ... 10

Keras .. 10

5. Deep Learning with Keras — Creating Deep Learning Model .. 12

Input Layer ... 12

Hidden Layer .. 13

Output Layer .. 14

6. Deep Learning with Keras — Compiling the Model ... 16

Loading Data .. 16

Deep Learning with Keras

 iv

Examining Data Points ... 16

7. Deep Learning with Keras ― Preparing Data ... 18

Normalizing Data ... 18

Examining Normalized Data .. 18

Examining Data Distribution .. 20

Encoding Data .. 20

8. Deep Learning with Keras — Training the Model .. 22

9. Deep Learning with Keras ― Evaluating Model Performance ... 24

Plotting Accuracy Metrics .. 24

Plotting Loss Metrics ... 25

10. Deep Learning with Keras ― Predicting on Test Data .. 27

11. Deep Learning with Keras ― Saving Model ... 28

12. Deep Learning with Keras ― Loading Model for Predictions ... 29

13. Deep Learning with Keras ― Conclusion ... 30

Deep Learning with Keras

 1

Deep Learning has become a buzzword in recent days in the field of Artificial Intelligence

(AI). For many years, we used Machine Learning (ML) for imparting intelligence to

machines. In recent days, deep learning has become more popular due to its supremacy

in predictions as compared to traditional ML techniques.

Deep Learning essentially means training an Artificial Neural Network (ANN) with a huge

amount of data. In deep learning, the network learns by itself and thus requires

humongous data for learning. While traditional machine learning is essentially a set of

algorithms that parse data and learn from it. They then used this learning for making

intelligent decisions.

Now, coming to Keras, it is a high-level neural networks API that runs on top of TensorFlow

- an end-to-end open source machine learning platform. Using Keras, you easily define

complex ANN architectures to experiment on your big data. Keras also supports GPU,

which becomes essential for processing huge amount of data and developing machine

learning models.

In this tutorial, you will learn the use of Keras in building deep neural networks. We shall

look at the practical examples for teaching. The problem at hand is recognizing

handwritten digits using a neural network that is trained with deep learning.

Just to get you more excited in deep learning, below is a screenshot of Google trends on

deep learning here:

1. Deep Learning with Keras — Introduction

Deep Learning with Keras

 2

As you can see from the diagram, the interest in deep learning is steadily growing over

the last several years. There are many areas such as computer vision, natural language

processing, speech recognition, bioinformatics, drug design, and so on, where the deep

learning has been successfully applied. This tutorial will get you quickly started on deep

learning.

So keep reading!

Deep Learning with Keras

 3

As said in the introduction, deep learning is a process of training an artificial neural network

with a huge amount of data. Once trained, the network will be able to give us the

predictions on unseen data. Before I go further in explaining what deep learning is, let us

quickly go through some terms used in training a neural network.

Neural Networks

The idea of artificial neural network was derived from neural networks in our brain. A

typical neural network consists of three layers — input, output and hidden layer as shown

in the picture below.

This is also called a shallow neural network, as it contains only one hidden layer. You add

more hidden layers in the above architecture to create a more complex architecture.

Deep Networks

The following diagram shows a deep network consisting of four hidden layers, an input

layer and an output layer.

2. Deep Learning with Keras ― Deep Learning

Deep Learning with Keras

 4

As the number of hidden layers are added to the network, its training becomes more

complex in terms of required resources and the time it takes to fully train the network.

Network Training

After you define the network architecture, you train it for doing certain kinds of predictions.

Training a network is a process of finding the proper weights for each link in the network.

During training, the data flows from Input to Output layers through various hidden

layers. As the data always moves in one direction from input to output, we call this network

as Feed-forward Network and we call the data propagation as Forward Propagation.

Activation Function

At each layer, we calculate the weighted sum of inputs and feed it to an Activation

function. The activation function brings nonlinearity to the network. It is simply some

mathematical function that discretizes the output. Some of the most commonly used

activations functions are sigmoid, hyperbolic, tangent (tanh), ReLU and Softmax.

Backpropagation

Backpropagation is an algorithm for supervised learning. In Backpropagation, the errors

propagate backwards from the output to the input layer. Given an error function, we

calculate the gradient of the error function with respect to the weights assigned at each

connection. The calculation of the gradient proceeds backwards through the network. The

gradient of the final layer of weights is calculated first and the gradient of the first layer

of weights is calculated last.

At each layer, the partial computations of the gradient are reused in the computation of

the gradient for the previous layer. This is called Gradient Descent.

Deep Learning with Keras

 5

In this project-based tutorial you will define a feed-forward deep neural network and train

it with backpropagation and gradient descent techniques. Luckily, Keras provides us all

high level APIs for defining network architecture and training it using gradient descent.

Next, you will learn how to do this in Keras.

Handwritten Digit Recognition System

In this mini project, you will apply the techniques described earlier. You will create a deep

learning neural network that will be trained for recognizing handwritten digits. In any

machine learning project, the first challenge is collecting the data. Especially, for deep

learning networks, you need humongous data. Fortunately, for the problem that we are

trying to solve, somebody has already created a dataset for training. This is called mnist,

which is available as a part of Keras libraries. The dataset consists of several 28x28 pixel

images of handwritten digits. You will train your model on the major portion of this dataset

and the rest of the data would be used for validating your trained model.

Project Description

The mnist dataset consists of 70000 images of handwritten digits. A few sample images

are reproduced here for your reference:

Each image is of size 28 x 28 pixels making it a total of 768 pixels of various gray scale

levels. Most of the pixels tend towards black shade while only few of them are towards

white. We will put the distribution of these pixels in an array or a vector. For example, the

distribution of pixels for a typical image of digits 4 and 5 is shown in the figure below.

Deep Learning with Keras

 6

Clearly, you can see that the distribution of the pixels (especially those tending towards

white tone) differ, this distinguishes the digits they represent. We will feed this distribution

of 784 pixels to our network as its input. The output of the network will consist of 10

categories representing a digit between 0 and 9.

Our network will consist of 4 layers — one input layer, one output layer and two hidden

layers. Each hidden layer will contain 512 nodes. Each layer is fully connected to the next

layer. When we train the network, we will be computing the weights for each connection.

We train the network by applying backpropagation and gradient descent that we discussed

earlier.

Deep Learning with Keras

 7

With this background, let us now start creating the project.

Setting Up Project

We will use Jupyter through Anaconda navigator for our project. As our project uses

TensorFlow and Keras, you will need to install those in Anaconda setup. To install

Tensorflow, run the following command in your console window:

>conda install -c anaconda tensorflow

To install Keras, use the following command:

>conda install -c anaconda keras

You are now ready to start Jupyter.

Starting Jupyter

When you start the Anaconda navigator, you would see the following opening screen.

3. Deep Learning with Keras — Setting up
Project

Deep Learning with Keras

 8

Click ‘Jupyter’ to start it. The screen will show up the existing projects, if any, on your

drive.

Starting a New Project

Start a new Python 3 project in Anaconda by selecting the following menu option:

File | New Notebook | Python 3

The screenshot of the menu selection is shown for your quick reference:

A new blank project will show up on your screen as shown below:

Deep Learning with Keras

 9

Change the project name to DeepLearningDigitRecognition by clicking and editing on

the default name “UntitledXX”.

Deep Learning with Keras

 10

We first import the various libraries required by the code in our project.

Array Handling and Plotting

As typical, we use numpy for array handling and matplotlib for plotting. These libraries

are imported in our project using the following import statements:

import numpy as np

import matplotlib

import matplotlib.pyplot as plot

Suppressing Warnings

As both Tensorflow and Keras keep on revising, if you do not sync their appropriate

versions in the project, at runtime you would see plenty of warning errors. As they distract

your attention from learning, we shall be suppressing all the warnings in this project. This

is done with the following lines of code:

silent all warnings

import os

os.environ['TF_CPP_MIN_LOG_LEVEL']='3'

import warnings

warnings.filterwarnings('ignore')

from tensorflow.python.util import deprecation

deprecation._PRINT_DEPRECATION_WARNINGS = False

Keras

We use Keras libraries to import dataset. We will use the mnist dataset for handwritten

digits. We import the required package using the following statement:

from keras.datasets import mnist

We will be defining our deep learning neural network using Keras packages. We import

the Sequential, Dense, Dropout and Activation packages for defining the network

architecture. We use load_model package for saving and retrieving our model. We also

use np_utils for a few utilities that we need in our project. These imports are done with

the following program statements:

from keras.models import Sequential, load_model

from keras.layers.core import Dense, Dropout, Activation

4. Deep Learning with Keras — Importing
Libraries

Deep Learning with Keras

 11

from keras.utils import np_utils

When you run this code, you will see a message on the console that says that Keras uses

TensorFlow at the backend. The screenshot at this stage is shown here:

Now, as we have all the imports required by our project, we will proceed to define the

architecture for our Deep Learning network.

Deep Learning with Keras

 12

Our neural network model will consist of a linear stack of layers. To define such a model,

we call the Sequential function:

model = Sequential()

Input Layer

We define the input layer, which is the first layer in our network using the following

program statement:

model.add(Dense(512, input_shape=(784,)))

This creates a layer with 512 nodes (neurons) with 784 input nodes. This is depicted in

the figure below:

Note that all the input nodes are fully connected to the Layer 1, that is each input node is

connected to all 512 nodes of Layer 1.

Next, we need to add the activation function for the output of Layer 1. We will use ReLU

as our activation. The activation function is added using the following program statement:

5. Deep Learning with Keras — Creating Deep
Learning Model

Deep Learning with Keras

 13

model.add(Activation('relu'))

Next, we add Dropout of 20% using the statement below. Dropout is a technique used to

prevent model from overfitting.

model.add(Dropout(0.2))

At this point, our input layer is fully defined. Next, we will add a hidden layer.

Hidden Layer

Our hidden layer will consist of 512 nodes. The input to the hidden layer comes from our

previously defined input layer. All the nodes are fully connected as in the earlier case. The

output of the hidden layer will go to the next layer in the network, which is going to be

our final and output layer. We will use the same ReLU activation as for the previous layer

and a dropout of 20%. The code for adding this layer is given here:

model.add(Dense(512))

model.add(Activation('relu'))

model.add(Dropout(0.2))

The network at this stage can be visualized as follows:

Deep Learning with Keras

 14

Next, we will add the final layer to our network, which is the output layer. Note that you

may add any number of hidden layers using the code similar to the one which you have

used here. Adding more layers would make the network complex for training; however,

giving a definite advantage of better results in many cases though not all.

Output Layer

The output layer consists of just 10 nodes as we want to classify the given images in 10

distinct digits. We add this layer, using the following statement:

model.add(Dense(10))

As we want to classify the output in 10 distinct units, we use the softmax activation. In

case of ReLU, the output is binary. We add the activation using the following statement:

model.add(Activation('softmax'))

At this point, our network can be visualized as shown in the below diagram:

At this point, our network model is fully defined in the software. Run the code cell and if

there are no errors, you will get a confirmation message on the screen as shown in the

screenshot below:

Deep Learning with Keras

 15

Next, we need to compile the model.

Deep Learning with Keras

 16

The compilation is performed using one single method call called compile.

model.compile(loss='categorical_crossentropy', metrics=['accuracy'],

optimizer='adam')

The compile method requires several parameters. The loss parameter is specified to have

type 'categorical_crossentropy'. The metrics parameter is set to 'accuracy' and finally

we use the adam optimizer for training the network. The output at this stage is shown

below:

Now, we are ready to feed in the data to our network.

Loading Data

As said earlier, we will use the mnist dataset provided by Keras. When we load the data

into our system, we will split it in the training and test data. The data is loaded by calling

the load_data method as follows:

(X_train, y_train), (X_test, y_test) = mnist.load_data()

The output at this stage looks like the following:

Now, we shall learn the structure of the loaded dataset.

Examining Data Points

The data that is provided to us are the graphic images of size 28 x 28 pixels, each

containing a single digit between 0 and 9. We will display the first ten images on the

console. The code for doing so is given below:

printing first 10 images

for i in range(10):

6. Deep Learning with Keras — Compiling the
Model

Deep Learning with Keras

 17

 plot.subplot(3,5,i+1)

 plot.tight_layout()

 plot.imshow(X_train[i], cmap='gray', interpolation='none')

 plot.title("Digit: {}".format(y_train[i]))

 plot.xticks([])

 plot.yticks([])

)

In an iterative loop of 10 counts, we create a subplot on each iteration and show an image

from X_train vector in it. We title each image from the corresponding y_train vector.

Note that the y_train vector contains the actual values for the corresponding image in

X_train vector. We remove the x and y axes markings by calling the two methods xticks

and yticks with null argument. When you run the code, you would see the following

output:

Next, we will prepare data for feeding it into our network.

Deep Learning with Keras

 18

Before we feed the data to our network, it must be converted into the format required by

the network. This is called preparing data for the network. It generally consists of

converting a multi-dimensional input to a single-dimension vector and normalizing the

data points.

Reshaping Input Vector

The images in our dataset consist of 28 x 28 pixels. This must be converted into a single

dimensional vector of size 28 * 28 = 784 for feeding it into our network. We do so by

calling the reshape method on the vector.

X_train = X_train.reshape(60000, 784)

X_test = X_test.reshape(10000, 784)

Now, our training vector will consist of 60000 data points, each consisting of a single

dimension vector of size 784. Similarly, our test vector will consist of 10000 data points

of a single-dimension vector of size 784.

Normalizing Data

The data that the input vector contains currently has a discrete value between 0 and 255

- the gray scale levels. Normalizing these pixel values between 0 and 1 helps in speeding

up the training. As we are going to use stochastic gradient descent, normalizing data will

also help in reducing the chance of getting stuck in local optima.

To normalize the data, we represent it as float type and divide it by 255 as shown in the

following code snippet:

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

X_train /= 255

X_test /= 255

Let us now look at how the normalized data looks like.

Examining Normalized Data

To view the normalized data, we will call the histogram function as shown here:

plot.hist(X_train[0])

plot.title("Digit: {}".format(y_train[0]))

Here, we plot the histogram of the first element of the X_train vector. We also print the

digit represented by this data point. The output of running the above code is shown here:

7. Deep Learning with Keras ― Preparing Data

Deep Learning with Keras

 19

You will notice a thick density of points having value close to zero. These are the black dot

points in the image, which obviously is the major portion of the image. The rest of the

gray scale points, which are close to white color, represent the digit. You may check out

the distribution of pixels for another digit. The code below prints the histogram of a digit

at index of 2 in the training dataset.

plot.hist(X_train[2])

plot.title("Digit: {}".format(y_train[2])

The output of running the above code is shown below:

Deep Learning with Keras

 20

Comparing the above two figures, you will notice that the distribution of the white pixels

in two images differ indicating a representation of a different digit - “5” and “4” in the

above two pictures.

Next, we will examine the distribution of data in our full training dataset.

Examining Data Distribution

Before we train our machine learning model on our dataset, we should know the

distribution of unique digits in our dataset. Our images represent 10 distinct digits ranging

from 0 to 9. We would like to know the number of digits 0, 1, etc., in our dataset. We can

get this information by using the unique method of Numpy.

Use the following command to print the number of unique values and the number of

occurrences of each one:

print(np.unique(y_train, return_counts=True))

When you run the above command, you will see the following output:

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8), array([5923, 6742, 5958,

6131, 5842, 5421, 5918, 6265, 5851, 5949]))

It shows that there are 10 distinct values — 0 through 9. There are 5923 occurrences of

digit 0, 6742 occurrences of digit 1, and so on. The screenshot of the output is shown

here:

As a final step in data preparation, we need to encode our data.

Encoding Data

We have ten categories in our dataset. We will thus encode our output in these ten

categories using one-hot encoding. We use to_categorial method of Numpy utilities to

perform encoding. After the output data is encoded, each data point would be converted

into a single dimensional vector of size 10. For example, digit 5 will now be represented

as [0,0,0,0,0,1,0,0,0,0].

Encode the data using the following piece of code:

n_classes = 10

Y_train = np_utils.to_categorical(y_train, n_classes)

You may check out the result of encoding by printing the first 5 elements of the categorized

Y_train vector.

Use the following code to print the first 5 vectors:

Deep Learning with Keras

 21

for i in range(5):

 print (Y_train[i])

You will see the following output:

[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]

[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]

[0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]

The first element represents digit 5, the second represents digit 0, and so on.

Finally, you will have to categorize the test data too, which is done using the following

statement:

Y_test = np_utils.to_categorical(y_test, n_classes)

At this stage, your data is fully prepared for feeding into the network.

Next, comes the most important part and that is training our network model.

Deep Learning with Keras

 22

The model training is done in one single method call called fit that takes few parameters

as seen in the code below:

history = model.fit(X_train, Y_train,

 batch_size=128, epochs=20,

 verbose=2,

 validation_data=(X_test, Y_test)))

The first two parameters to the fit method specify the features and the output of the

training dataset.

The epochs is set to 20; we assume that the training will converge in max 20 epochs -

the iterations. The trained model is validated on the test data as specified in the last

parameter.

The partial output of running the above command is shown here:

Train on 60000 samples, validate on 10000 samples

Epoch 1/20

 - 9s - loss: 0.2488 - acc: 0.9252 - val_loss: 0.1059 - val_acc: 0.9665

Epoch 2/20

 - 9s - loss: 0.1004 - acc: 0.9688 - val_loss: 0.0850 - val_acc: 0.9715

Epoch 3/20

 - 9s - loss: 0.0723 - acc: 0.9773 - val_loss: 0.0717 - val_acc: 0.9765

Epoch 4/20

 - 9s - loss: 0.0532 - acc: 0.9826 - val_loss: 0.0665 - val_acc: 0.9795

Epoch 5/20

 - 9s - loss: 0.0457 - acc: 0.9856 - val_loss: 0.0695 - val_acc: 0.9792

The screenshot of the output is given below for your quick reference:

8. Deep Learning with Keras — Training the
Model

Deep Learning with Keras

 23

Now, as the model is trained on our training data, we will evaluate its performance.

Deep Learning with Keras

 24

To evaluate the model performance, we call evaluate method as follows:

loss_and_metrics = model.evaluate(X_test, Y_test, verbose=2)

We will print the loss and accuracy using the following two statements:

print("Test Loss", loss_and_metrics[0])

print("Test Accuracy", loss_and_metrics[1])

When you run the above statements, you would see the following output:

Test Loss 0.08041584826191042

Test Accuracy 0.9837

This shows a test accuracy of 98%, which should be acceptable to us. What it means to

us that in 2% of the cases, the handwritten digits would not be classified correctly. We will

also plot accuracy and loss metrics to see how the model performs on the test data.

Plotting Accuracy Metrics

We use the recorded history during our training to get a plot of accuracy metrics. The

following code will plot the accuracy on each epoch. We pick up the training data accuracy

(“acc”) and the validation data accuracy (“val_acc”) for plotting.

plot.subplot(2,1,1)

plot.plot(history.history['acc'])

plot.plot(history.history['val_acc'])

plot.title('model accuracy')

plot.ylabel('accuracy')

plot.xlabel('epoch')

plot.legend(['train', 'test'], loc='lower right')

The output plot is shown below:

9. Deep Learning with Keras ― Evaluating Model
Performance

Deep Learning with Keras

 25

As you can see in the diagram, the accuracy increases rapidly in the first two epochs,

indicating that the network is learning fast. Afterwards, the curve flattens indicating that

not too many epochs are required to train the model further. Generally, if the training data

accuracy (“acc”) keeps improving while the validation data accuracy (“val_acc”) gets

worse, you are encountering overfitting. It indicates that the model is starting to memorize

the data.

We will also plot the loss metrics to check our model’s performance.

Plotting Loss Metrics

Again, we plot the loss on both the training (“loss”) and test (“val_loss”) data. This is done

using the following code:

plot.subplot(2,1,2)

plot.plot(history.history['loss'])

plot.plot(history.history['val_loss'])

plot.title('model loss')

plot.ylabel('loss')

plot.xlabel('epoch')

plot.legend(['train', 'test'], loc='upper right')

The output of this code is shown below:

Deep Learning with Keras

 26

As you can see in the diagram, the loss on the training set decreases rapidly for the first

two epochs. For the test set, the loss does not decrease at the same rate as the training

set, but remains almost flat for multiple epochs. This means our model is generalizing well

to unseen data.

Now, we will use our trained model to predict the digits in our test data.

Deep Learning with Keras

 27

To predict the digits in an unseen data is very easy. You simply need to call the

predict_classes method of the model by passing it to a vector consisting of your

unknown data points.

predictions = model.predict_classes(X_test)

The method call returns the predictions in a vector that can be tested for 0’s and 1’s

against the actual values. This is done using the following two statements:

correct_predictions = np.nonzero(predictions == y_test)[0]

incorrect_predictions = np.nonzero(predictions != y_test)[0]

Finally, we will print the count of correct and incorrect predictions using the following two

program statements:

print(len(correct_predictions)," classified correctly")

print(len(incorrect_predictions)," classified incorrectly")

When you run the code, you will get the following output:

9837 classified correctly

163 classified incorrectly

Now, as you have satisfactorily trained the model, we will save it for future use.

10. Deep Learning with Keras ― Predicting on
Test Data

Deep Learning with Keras

 28

We will save the trained model in our local drive in the models folder in our current

working directory. To save the model, run the following code:

directory = "./models/"

name = 'handwrittendigitrecognition.h5'

path = os.path.join(save_dir, name)

model.save(path)

print('Saved trained model at %s ' % path)

The output after running the code is shown below:

Now, as you have saved a trained model, you may use it later on for processing your

unknown data.

11. Deep Learning with Keras ― Saving Model

Deep Learning with Keras

 29

To predict the unseen data, you first need to load the trained model into the memory. This

is done using the following command:

model = load_model ('./models/handwrittendigitrecognition.h5')

Note that we are simply loading the .h5 file into memory. This sets up the entire neural

network in memory along with the weights assigned to each layer.

Now, to do your predictions on unseen data, load the data, let it be one or more items,

into the memory. Preprocess the data to meet the input requirements of our model as

what you did on your training and test data above. After preprocessing, feed it to your

network. The model will output its prediction.

12. Deep Learning with Keras ― Loading Model
for Predictions

Deep Learning with Keras

 30

Keras provides a high level API for creating deep neural network. In this tutorial, you

learned to create a deep neural network that was trained for finding the digits in

handwritten text. A multi-layer network was created for this purpose. Keras allows you to

define an activation function of your choice at each layer. Using gradient descent, the

network was trained on the training data. The accuracy of the trained network in predicting

the unseen data was tested on the test data. You learned to plot the accuracy and error

metrics. After the network is fully trained, you saved the network model for future use.

13. Deep Learning with Keras ― Conclusion

