tutor‘lalspomt

=S MPLYEASYULEARN

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia 3 https://twitter.com/tutorialspoint

Flask

About the Tutorial

Flask is a web application framework written in Python. Armin Ronacher, who leads an
international group of Python enthusiasts named Pocco, develops it. Flask is based on
Werkzeug WSGI toolkit and Jinja2 template engine. Both are Pocco projects.

Audience

This tutorial has been prepared for anyone who has a basic knowledge of Python and has
an urge to develop websites. After completing this tutorial, you will find yourself at a
moderate level of expertise in developing websites using Flask.

Prerequisites

Before you start proceeding with this tutorial, we are assuming that you have hands-on
experience on HTML and Python. If you are not well aware of these concepts, then we will
suggest you to go through our short tutorials on HTML and Python.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

tutorialspoint

EIMPLYEAEYLEARMINEG

mailto:contact@tutorialspoint.com

Flask

Table of Contents

10.

11.

12,

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

ADOUL the TULOTTAl c..eeiieieeieee ettt sb e bt e et et e b e b e e b e e reeresmnesanes i
Yo 1= o TSP PSSP PROPRO i
e =T =T o UL =TT PP TP PO PPPPPTRTRN i
(00T 0}V T4 o AT D Tl =1 1= USSP i
TABIE OF CONTENTS ittt ettt e s e st e st e st e st e e sa bt e sabeesabeesaseesabeesaneesn i
L Sl 0= T 1
FIask — ENVIFONMENT......ueiiiiiiiiiiiitiiiiieciiiiie e ssiee s sssase s ssst e sssase s s as e s sssss e sessanessessssesssssssessssanessnne 2
(=T Q¥ e o] [or=1 4 Lo T 00 3
FIASK — ROULINGuuuueeeeennnnnnnnnnnssnsnssnnnnns 5
FIask — Variable RUIESccuueiiiiiiiiiitiiiiteinttn ittt ssse s sas e s s ss e s s sase e s s san e s snns 6
FIask — URL BUIIAINGuuueeeeeeeeeesssnsnssnnnnen 8
Flask — HTTP MEthodsccoouiiiiiiiiiiiiiiiiiiitiiiiiiienciinncnneecnsssnesssssesessessesssnesssssssesessssessesssseses 10
FIask — T@MIPIAEES....uuuuuueirrrrrrrrsrss 13
FIQsk — STatiC FIles ...cciiivuiiiiiiiiiiiiiiiiiiiiiiiiinteiiineinsene s s sssnesssssssesesssseesesssnessssssnesesssnessessanesee 17
Flask — REQUEST ODJECEuuuuurrriirrsssns 18
Flask — Sending FOrm Data to TEMPIAteccccceceiiiiiiiiicrcccrcrrsrrrssssss s sssssssssssssssssssssssnssnnnnns 19
Tl o oL 22
FIQSK = S@SSIONS....uueeriiiiiiiiiierteiiiiiiietre st ses e sss e s s as s s e e s s s s san s s e e e s se s s s nnnneees 25
Flask — Redire@Ct and ErTOrS.......uciiiiiiiiiieereeiiiiiieerecciinsieesree s ssssaes e sassse e s s s sssss e e s s se s ssnnnnenes 28
Flask — MesSage FIQShINGcoiiiiireeiiiiiiiiiicscccinrrrereeessse s seennss s e s s e s e snnsssssessseesnnnssssssssessnnnnssssssssssnnnnns 31
FIask — File UPlOAdingcceeeerrrrrrrrssns 36
FIQSK — EXEENSIONS ..ceeiiiuneriiiiiiniiiiiiieiiiinteiiiieteiissneeicsssnessssssnesesssneesesssnessssssnesssssnessessanessssssnesesssnessessanense 38
LTl /- 1 39
FIQSK = WTF c.cueeiiiiiiiiiiiietiiiineeniineeiisene et sssssnessssssnesssssnnesesssnessesssnesessssnesesssnessesssnesssssnnesesssnnesessnnense 43
FlaSK — SOOIt .. reuureeeireeieeeireerineereesereesrenserssssesssrssssssssrsssssssssassessssssssssassssnssssssssnssrassasssssansssnssssnsssnsssanssnan 49
[E T (Y 01 I\ (] o 1=y 1|V 55
FIASK = STjaX.eieeeeeunieiiiiiieiienieeieitieennseeeeesereennssssseeseeeenmnssssssssseesnnssssssssssssnnnssssssssessnnnssssssssseennnnsssssssesennnnns 62
[E: T [l D 1T o] [1y 1 1= | S 64

ii

w tutorialspoint

EIMPLYEAEYLEARMINEG

Flask

p 2 B 5 =13 [l o= 1 { o]] [F PPNt 66

@ tutorialspoint

1. FLASK—-OVERVIEW

What is Web Framework?

Web Application Framework or simply Web Framework represents a collection of libraries and
modules that enables a web application developer to write applications without having to
bother about low-level details such as protocols, thread management etc.

What is Flask?

Flask is a web application framework written in Python. It is developed by Armin Ronacher,
who leads an international group of Python enthusiasts named Pocco. Flask is based on the
Werkzeug WSGI toolkit and Jinja2 template engine. Both are Pocco projects.

WSGI

Web Server Gateway Interface (WSGI) has been adopted as a standard for Python web
application development. WSGI is a specification for a universal interface between the web
server and the web applications.

Werkzeug

It is a WSGI toolkit, which implements requests, response objects, and other utility functions.
This enables building a web framework on top of it. The Flask framework uses Werkzeug as
one of its bases.

Jinga2

Jinga2 is a popular templating engine for Python. A web templating system combines a
template with a certain data source to render dynamic web pages.

Flask is often referred to as a micro framework. It aims to keep the core of an application
simple yet extensible. Flask does not have built-in abstraction layer for database handling,
nor does it have form a validation support. Instead, Flask supports the extensions to add such
functionality to the application. Some of the popular Flask extensions are discussed later in
the tutorial.

w tutorialspoint

EIMPLYEAEYLEARNINEG

2. FLASK—ENVIRONMENT

Prerequisite

Python 2.6 or higher is usually required for installation of Flask. Although Flask and its
dependencies work well with Python 3 (Python 3.3 onwards), many Flask extensions do not
support it properly. Hence, it is recommended that Flask should be installed on Python 2.7.

Install virtualenv for development environment

virtualenv is a virtual Python environment builder. It helps a user to create multiple Python
environments side-by-side. Thereby, it can avoid compatibility issues between the different
versions of the libraries.

The following command installs virtualenv.

pip install virtualenv

This command needs administrator privileges. Add sudo before pip on Linux/Mac OS. If you
are on Windows, log in as Administrator. On Ubuntu virtualenv may be installed using its
package manager.

Sudo apt-get install virtualenv

Once installed, new virtual environment is created in a folder.

mkdir newproj
cd newproj

virtualenv venv

To activate corresponding environment, on Linux/0S X, use the following:

venv/bin/activate

On Windows, following can be used:

venv\scripts\activate

We are now ready to install Flask in this environment.

pip install Flask

w tutorialspoint

EIMPLYEAEYLEARNINEG

Flask

The above command can be run directly, without virtual environment for system-wide
installation.

tutorialspoint

EIMPLYEAEYLEARMING

3. FLASK—APPLICATION

In order to test Flask installation, type the following code in the editor as Hello.py

from flask import Flask
app = Flask(__name_)

@app.route('/")
def hello_world():

return 'Hello World’

if __name__ == '__main__':

app.run()

Importing flask module in the project is mandatory. An object of Flask class is our WSGI
application.

Flask constructor takes the name of current module (__name__) as argument.

The route() function of the Flask class is a decorator, which tells the application which URL
should call the associated function.

app.route(rule, options)

e The rule parameter represents URL binding with the function.

e The options is a list of parameters to be forwarded to the underlying Rule object.

In the above example, '/’ URL is bound with hello_world() function. Hence, when the home
page of web server is opened in browser, the output of this function will be rendered.

Finally the run() method of Flask class runs the application on the local development server.

app.run(host, port, debug, options)

All parameters are optional

host Hos-tname to listen on. Defaults to 127.0.0.1 (localhost). Set to ‘0.0.0.0’ to have server
available externally
port Defaults to 5000
debug Defaults to false. If set to true, provides a debug information
options To be forwarded to underlying Werkzeug server.

w tutorialspoint

EIMPLYEAEYLEARNINEG

Flask

The above given Python script is executed from Python shell.

Python Hello.py

A message in Python shell informs you that

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Open the above URL (localhost:5000) in the browser. ‘Hello World" message will be
displayed on it.

Debug mode

A Flask application is started by calling the run() method. However, while the application is
under development, it should be restarted manually for each change in the code. To avoid
this inconvenience, enable debug support. The server will then reload itself if the code
changes. It will also provide a useful debugger to track the errors if any, in the application.

The Debug mode is enabled by setting the debug property of the application object to True
before running or passing the debug parameter to the run() method.

app.debug=True

app.run()
app.run(debug=True)

tutorialspoint

EIMPLYEAEYLEARNINEG

4. FLASK—ROUTING

Modern web frameworks use the routing technique to help a user remember application URLs.
It is useful to access the desired page directly without having to navigate from the home

page.

The route() decorator in Flask is used to bind URL to a function. For example:

@app.route(‘/hello’)
def hello_world():

return ‘hello world’

Here, URL ‘/hello’ rule is bound to the hello_world() function. As a result, if a user visits
http://localhost:5000/hello URL, the output of the hello_world() function will be rendered
in the browser.

The add_url_rule() function of an application object is also available to bind a URL with a
function as in the above example, route() is used.

A decorator’s purpose is also served by the following representation:

def hello _world():
return ‘hello world’

app.add_url rule(¢/’, ‘hello’, hello)

' tutorialspoint

EIMPLYEAEYLEARNINEG

5. FLASK—-VARIABLE RULES

It is possible to build a URL dynamically, by adding variable parts to the rule parameter. This
variable part is marked as <variable-name>. It is passed as a keyword argument to the
function with which the rule is associated.

In the following example, the rule parameter of route() decorator contains <name> variable
part attached to URL ‘/hello’. Hence, if the http://localhost:5000/hello/TutorialsPoint is
entered as a URL in the browser, ‘TutorialPoint’ will be supplied to hello() function as
argument.

from flask import Flask

app = Flask(__name_)

@app.route('/hello/<name>")

def hello_name(name):
return 'Hello %s!' % name

if __name__ == '__main__"':

app.run(debug=True)

Save the above script as hello.py and run it from Python shell. Next, open the browser and
enter URL http://localhost:5000/hello/TutorialsPoint.

The following output will be displayed in the browser.

Hello TutorialsPoint!

In addition to the default string variable part, rules can be constructed using the following
converters:

int accepts integer
float For floating point value
path accepts slashes used as directory separator character

In the following code, all these constructors are used.

from flask import Flask

10

w tutorialspoint

EIMPLYEAEYLEARNINEG

http://localhost:5000/hello/TutorialsPoint
http://localhost:5000/hello/TutorialsPoint

Flask

app = Flask(__name_)
@app.route('/blog/<int:postID>")
def show_blog(postID):

return 'Blog Number %d' % postID
@app.route('/rev/<float:revNo>")
def revision(revNo):

return 'Revision Number %f' % revNo

if __name__ == '_main__"':

app.run()

Run the above code from Python Shell. Visit the URL http://localhost:5000/blog/11 in_the
browser.

The given number is used as argument to the show_blog() function. The browser displays
the following output:

Blog Number 11

Enter this URL in the browser: http://localhost:5000/rev/1.1

The revision() function takes up the floating point number as argument. The following result
appears in the browser window:

Revision Number 1.100000

The URL rules of Flask are based on Werkzeug'’s routing module. This ensures that the URLs
formed are unique and based on precedents laid down by Apache.

Consider the rules defined in the following script:

from flask import Flask
app = Flask(__name_)
@app.route('/flask")
def hello_flask():
return 'Hello Flask'
@app.route('/python/")
def hello python():
return 'Hello Python'

if __name__ == '__main__":

11

tutorialspoint

EIMPLYEAEYLEARNINEG

http://localhost:5000/blog/11
http://localhost:5000/rev/1.1

Flask

app.run()

Both the rules appear similar but in the second rule, trailing slash (/) is used. As a result, it
becomes a canonical URL. Hence, using /python or /python/ returns the same output.
However, in case of the first rule, /flask/ URL results in 404 Not Found page.

12

tutorialspoint

EIMPLYEAEYLEARNINEG

6. FLASK—URLBUILDING

The url_for() function is very useful for dynamically building a URL for a specific function.
The function accepts the name of a function as first argument, and one or more keyword
arguments, each corresponding to the variable part of URL.

The following script demonstrates use of url_for() function.

from flask import Flask, redirect, url_for
app = Flask(__name_)
@app.route('/admin')
def hello_admin():

return 'Hello Admin'
@app.route('/guest/<guest>")
def hello_guest(guest):

return 'Hello %s as Guest' % guest
@app.route('/user/<name>")
def hello_user(name):

if name=='admin':

return redirect(url_for('hello_admin'))
else:

return redirect(url_for('hello_guest',guest=name))

if __name__ == '__main__"':

app.run(debug=True)

The above script has a function user(name) which accepts a value to its argument from the
URL.

The User() function checks if an argument received matches ‘admin’ or not. If it matches,
the application is redirected to the hello_admin() function using url_for(), otherwise to the
hello_guest() function passing the received argument as guest parameter to it.

Save the above code and run from Python shell.
Open the browser and enter URL as:

http://localhost:5000/hello/admin

13

w tutorialspoint

EIMPLYEAEYLEARNINEG

http://localhost:5000/hello/admin

Flask

End of ebook preview
If you liked what you saw...
Buy it from our store @ https://store.tutorialspoint.com

14

tutorialspoint

EIMPLYEAEYLEARMING

