
H2O

 i

H2O

 i

About the Tutorial

H2O is an open source Machine Learning framework with full-tested implementations of

several widely-accepted ML algorithms. You just have to pick up the algorithm from its

huge repository and apply it to your dataset. It contains the most widely used statistical

and ML algorithms.

H2O provides an easy-to-use open source platform for applying different ML algorithms

on a given dataset. It provides several statistical and ML algorithms including deep

learning.

In this tutorial, we will consider examples and understand how to go about working with

H2O.

Audience

This tutorial is designed to help all those learners who are aiming to develop a Machine

Learning model on a huge database.

Prerequisites

It is assumed that the learner has a basic understanding of Machine Learning and is

familiar with Python.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

H2O

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. H2O — Introduction .. 1

2. H2O — Installation .. 2

Install in Python ... 2

Install in R .. 5

Install in R from CRAN ... 8

Installing Web GUI Flow .. 9

Install on Hadoop / Anaconda Cloud ... 11

Developing in Command Prompt .. 12

Running in Jupyter ... 14

Applying a Different Algorithm .. 15

3. H2O — H2O Flow .. 17

Starting H2O Flow .. 17

4. H2O — Running H2O Sample Application ... 19

Clearing All Outputs ... 19

Running the First Cell... 20

Importing Data .. 21

Setting Up Data Parser .. 21

Examining Dataframe .. 23

Building the Model .. 24

Examining Output .. 25

Building Another Model .. 26

H2O

 iii

Examining Deep Learning Model Output .. 27

Saving the Model ... 28

5. H2O — AutoML in H2O ... 30

Importing AutoML ... 30

Initialize H2O ... 30

Loading Data .. 31

Preparing Dataset .. 31

Applying AutoML ... 32

Printing the Leaderboard .. 32

Predicting on Test Data ... 33

Printing Result ... 33

Printing the Ranking for All .. 34

Conclusion ... 35

H2O

 1

Have you ever been asked to develop a Machine Learning model on a huge database?

Typically, the customer will provide you the database and ask you to make certain

predictions such as who will be the potential buyers; if there can be an early detection of

fraudulent cases, etc. To answer these questions, your task would be to develop a Machine

Learning algorithm that would provide an answer to the customer’s query. Developing a

Machine Learning algorithm from scratch is not an easy task and why should you do this

when there are several ready-to-use Machine Learning libraries available in the market.

These days, you would rather use these libraries, apply a well-tested algorithm from these

libraries and look at its performance. If the performance were not within acceptable limits,

you would try to either fine-tune the current algorithm or try an altogether different one.

Likewise, you may try multiple algorithms on the same dataset and then pick up the best

one that satisfactorily meets the customer’s requirements. This is where H2O comes to

your rescue. It is an open source Machine Learning framework with full-tested

implementations of several widely-accepted ML algorithms. You just have to pick up the

algorithm from its huge repository and apply it to your dataset. It contains the most widely

used statistical and ML algorithms.

To mention a few here it includes gradient boosted machines (GBM), generalized linear

model (GLM), deep learning and many more. Not only that it also supports AutoML

functionality that will rank the performance of different algorithms on your dataset, thus

reducing your efforts of finding the best performing model. H2O is used worldwide by more

than 18000 organizations and interfaces well with R and Python for your ease of

development. It is an in-memory platform that provides superb performance.

In this tutorial, you will first learn to install the H2O on your machine with both Python

and R options. We will understand how to use this in the command line so that you

understand its working line-wise. If you are a Python lover, you may use Jupyter or any

other IDE of your choice for developing H2O applications. If you prefer R, you may use

RStudio for development.

In this tutorial, we will consider an example to understand how to go about working with

H2O. We will also learn how to change the algorithm in your program code and compare

its performance with the earlier one. The H2O also provides a web-based tool to test the

different algorithms on your dataset. This is called Flow.

The tutorial will introduce you to the use of Flow. Alongside, we will discuss the use of

AutoML that will identify the best performing algorithm on your dataset. Are you not

excited to learn H2O? Keep reading!

1. H2O — Introduction

H2O

 2

H2O can be configured and used with five different options as listed below:

 Install in Python

 Install in R

 Web-based Flow GUI

 Hadoop

 Anaconda Cloud

In our subsequent sections, you will see the instructions for installation of H2O based on

the options available. You are likely to use one of the options.

Install in Python

To run H2O with Python, the installation requires several dependencies. So let us start

installing the minimum set of dependencies to run H2O.

Installing Dependencies

To install a dependency, execute the following pip command:

$ pip install requests

Open your console window and type the above command to install the requests package.

The following screenshot shows the execution of the above command on our Mac machine:

After installing requests, you need to install three more packages as shown below:

$ pip install tabulate

$ pip install "colorama>=0.3.8"

$ pip install future

The most updated list of dependencies is available on H2O GitHub page. At the time of

this writing, the following dependencies are listed on the page.

python

2. H2O — Installation

H2O

 3

pip >=9.0.1

setuptools

colorama>=0.3.7

future>=0.15.2

Removing Older Versions

After installing the above dependencies, you need to remove any existing H2O installation.

To do so, run the following command:

$ pip uninstall h2o

Installing the Latest Version

Now, let us install the latest version of H2O using the following command:

$ pip install -f http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Py.html

h2o

After successful installation, you should see the following message display on the screen:

Installing collected packages: h2o

Successfully installed h2o-3.26.0.1

Testing the Installation

To test the installation, we will run one of the sample applications provided in the H2O

installation. First start the Python prompt by typing the following command:

$ Python3

Once the Python interpreter starts, type the following Python statement on the Python

command prompt:

>>>import h2o

The above command imports the H2O package in your program. Next, initialize the H2O

system using the following command:

>>>h2o.init()

H2O

 4

Your screen would show the cluster information and should look the following at this stage:

Now, you are ready to run the sample code. Type the following command on the Python

prompt and execute it.

>>>h2o.demo("glm")

The demo consists of a Python notebook with a series of commands. After executing each

command, its output is shown immediately on the screen and you will be asked to hit the

key to continue with the next step. The partial screenshot on executing the last statement

in the notebook is shown here:

H2O

 5

At this stage your Python installation is complete and you are ready for your own

experimentation.

Install in R

Installing H2O for R development is very much similar to installing it for Python, except

that you would be using R prompt for the installation.

Starting R Console

Start R console by clicking on the R application icon on your machine. The console screen

would appear as shown in the following screenshot:

H2O

 6

Your H2O installation would be done on the above R prompt. If you prefer using RStudio,

type the commands in the R console subwindow.

Removing Older Versions

To begin with, remove older versions using the following command on the R prompt:

> if ("package:h2o" %in% search()) { detach("package:h2o", unload=TRUE) }

> if ("h2o" %in% rownames(installed.packages())) { remove.packages("h2o") }

Downloading Dependencies

Download the dependencies for H2O using the following code:

> pkgs <- c("RCurl","jsonlite")

for (pkg in pkgs) {

 if (! (pkg %in% rownames(installed.packages()))) { install.packages(pkg) }

}

Installing H2O

Install H2O by typing the following command on the R prompt:

> install.packages("h2o", type="source", repos=(c("http://h2o-

release.s3.amazonaws.com/h2o/latest_stable_R")))

H2O

 7

The following screenshot shows the expected output:

There is another way of installing H2O in R.

H2O

 8

Install in R from CRAN

To install R from CRAN, use the following command on R prompt:

> install.packages("h2o")

You will be asked to select the mirror:

--- Please select a CRAN mirror for use in this session ---

A dialog box displaying the list of mirror sites is shown on your screen. Select the nearest

location or the mirror of your choice.

Testing Installation

On the R prompt, type and run the following code:

> library(h2o)

> localH2O = h2o.init()

> demo(h2o.kmeans)

H2O

 9

The output generated will be as shown in the following screenshot:

Your H2O installation in R is complete now.

Installing Web GUI Flow

To install GUI Flow download the installation file from the H20 site. Unzip the downloaded

file in your preferred folder. Note the presence of h2o.jar file in the installation. Run this

file in a command window using the following command:

$ java -jar h2o.jar

H2O

 10

After a while, the following will appear in your console window.

07-24 16:06:37.304 192.168.1.18:54321 3294 main INFO: H2O started in 7725ms

07-24 16:06:37.304 192.168.1.18:54321 3294 main INFO:

07-24 16:06:37.305 192.168.1.18:54321 3294 main INFO: Open H2O Flow in your

web browser: http://192.168.1.18:54321

07-24 16:06:37.305 192.168.1.18:54321 3294 main INFO:

H2O

 11

To start the Flow, open the given URL http://localhost:54321 in your browser. The

following screen will appear:

At this stage, your Flow installation is complete.

Install on Hadoop / Anaconda Cloud

Unless you are a seasoned developer, you would not think of using H2O on Big Data. It is

sufficient to say here that H2O models run efficiently on huge databases of several

terabytes. If your data is on your Hadoop installation or in the Cloud, follow the steps

given on H2O site to install it for your respective database.

http://localhost:54321/

H2O

 12

Now that you have successfully installed and tested H2O on your machine, you are ready

for real development. First, we will see the development from a Command prompt. In our

subsequent lessons, we will learn how to do model testing in H2O Flow.

Developing in Command Prompt

Let us now consider using H2O to classify plants of the well-known iris dataset that is

freely available for developing Machine Learning applications.

Start the Python interpreter by typing the following command in your shell window:

$ Python3

This starts the Python interpreter. Import h2o platform using the following command:

>>> import h2o

We will use Random Forest algorithm for classification. This is provided in the

H2ORandomForestEstimator package. We import this package using the import statement

as follows:

>>> from h2o.estimators import H2ORandomForestEstimator

We initialize the H2o environment by calling its init method.

>>> h2o.init()

On successful initialization, you should see the following message on the console along

with the cluster information.

Checking whether there is an H2O instance running at http://localhost:54321 .

connected.

Now, we will import the iris data using the import_file method in H2O.

>>> data = h2o.import_file('iris.csv')

The progress will display as shown in the following screenshot:

H2O

 13

After the file is loaded in the memory, you can verify this by displaying the first 10 rows

of the loaded table. You use the head method to do so:

>>> data.head()

You will see the following output in tabular format.

The table also displays the column names. We will use the first four columns as the

features for our ML algorithm and the last column class as the predicted output. We specify

this in the call to our ML algorithm by first creating the following two variables.

>>> features = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']

>>> output = 'class'

Next, we split the data into training and testing by calling the split_frame method.

>>> train, test = data.split_frame(ratios=[0.8])

The data is split in the 80:20 ratio. We use 80% data for training and 20% for testing.

Now, we load the built-in Random Forest model into the system.

>>> model = H2ORandomForestEstimator(ntrees=50, max_depth=20, nfolds=10)

In the above call, we set the number of trees to 50, the maximum depth for the tree to

20 and number of folds for cross validation to 10. We now need to train the model. We do

so by calling the train method as follows:

>>> model.train(x=features, y=output, training_frame=train)

The train method receives the features and the output that we created earlier as first two

parameters. The training dataset is set to train, which is the 80% of our full dataset.

During training, you will see the progress as shown here:

H2O

 14

Now, as the model building process is over, it is time to test the model. We do this by

calling the model_performance method on the trained model object.

>>> performance = model.model_performance(test_data=test)

In the above method call, we sent test data as our parameter.

It is time now to see the output, which is the performance of our model. You do this by

simply printing the performance.

>>> print (performance)

This will give you the following output:

The output shows the Mean Square Error (MSE), Root Mean Square Error (RMSE), LogLoss

and even the Confusion Matrix.

Running in Jupyter

We have seen the execution from the command and also understood the purpose of each

line of code. You may run the entire code in a Jupyter environment, either line by line or

the whole program at a time. The complete listing is given here:

import h2o

from h2o.estimators import H2ORandomForestEstimator

H2O

 15

h2o.init()

data = h2o.import_file('iris.csv')

features = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']

output = 'class'

train, test = data.split_frame(ratios=[0.8])

model = H2ORandomForestEstimator(ntrees=50, max_depth=20, nfolds=10)

model.train(x=features, y=output, training_frame=train)

performance = model.model_performance(test_data=test)

print (performance)

Run the code and observe the output. You can now appreciate how easy it is to apply and

test a Random Forest algorithm on your dataset. The power of H20 goes far beyond this

capability. What if you want to try another model on the same dataset to see if you can

get better performance. This is explained in our subsequent section.

Applying a Different Algorithm

Now, we will learn how to apply a Gradient Boosting algorithm to our earlier dataset to

see how it performs. In the above full listing, you will need to make only two minor changes

as highlighted in the code below:

import h2o

from h2o.estimators import H2OGradientBoostingEstimator

h2o.init()

data = h2o.import_file('iris.csv')

features = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']

output = 'class'

train, test = data.split_frame(ratios=[0.8])

model = H2OGradientBoostingEstimator(ntrees=50, max_depth=20, nfolds=10)

model.train(x=features, y=output, training_frame=train)

performance = model.model_performance(test_data=test)

print (performance)

Run the code and you will get the following output:

H2O

 16

Just compare the results like MSE, RMSE, Confusion Matrix, etc. with the previous output

and decide on which one to use for production deployment. As a matter of fact, you can

apply several different algorithms to decide on the best one that meets your purpose.

H2O

 17

In the last lesson, you learned to create H2O based ML models using command line

interface. H2O Flow fulfils the same purpose, but with a web-based interface.

In the following lessons, I will show you how to start H2O Flow and to run a sample

application.

Starting H2O Flow

The H2O installation that you downloaded earlier contains the h2o.jar file. To start H2O

Flow, first run this jar from the command prompt:

$ java -jar h2o.jar

When the jar runs successfully, you will get the following message on the console:

Open H2O Flow in your web browser: http://192.168.1.10:54321

3. H2O — H2O Flow

H2O

 18

Now, open the browser of your choice and type the above URL. You would see the H2O

web-based desktop as shown here:

This is basically a notebook similar to Colab or Jupyter. I will show you how to load and

run a sample application in this notebook while explaining the various features in Flow.

Click on the view example Flows link on the above screen to see the list of provided

examples.

I will describe the Airlines delay Flow example from the sample.

H2O

 19

Click on the Airlines Delay Flow link in the list of samples as shown in the screenshot

below:

After you confirm, the new notebook would be loaded.

Clearing All Outputs

Before we explain the code statements in the notebook, let us clear all the outputs and

then run the notebook gradually. To clear all outputs, select the following menu option:

4. H2O — Running H2O Sample Application

H2O

 20

Flow / Clear All Cell Contents

This is shown in the following screenshot:

Once all outputs are cleared, we will run each cell in the notebook individually and examine

its output.

Running the First Cell

Click the first cell. A red flag appears on the left indicating that the cell is selected. This is

as shown in the screenshot below:

H2O

 21

The contents of this cell are just the program comment written in MarkDown (MD)

language. The content describes what the loaded application does. To run the cell, click

the Run icon as shown in the screenshot below:

You will not see any output underneath the cell as there is no executable code in the

current cell. The cursor now moves automatically to the next cell, which is ready to

execute.

Importing Data

The next cell contains the following Python statement:

importFiles ["https://s3.amazonaws.com/h2o-airlines-unpacked/allyears2k.csv"]

The statement imports the allyears2k.csv file from Amazon AWS into the system. When

you run the cell, it imports the file and gives you the following output.

Setting Up Data Parser

Now, we need to parse the data and make it suitable for our ML algorithm. This is done

using the following command:

setupParse paths: ["https://s3.amazonaws.com/h2o-airlines-

unpacked/allyears2k.csv"]

H2O

 22

Upon execution of the above statement, a setup configuration dialog appears. The dialog

allows you several settings for parsing the file. This is as shown in the screenshot below:

In this dialog, you can select the desired parser from the given drop-down list and set

other parameters such as the field separator, etc.

Parsing Data

The next statement, which actually parses the datafile using the above configuration, is a

long one and is as shown here:

parseFiles

 paths: ["https://s3.amazonaws.com/h2o-airlines-unpacked/allyears2k.csv"]

 destination_frame: "allyears2k.hex"

 parse_type: "CSV"

 separator: 44

 number_columns: 31

 single_quotes: false

 column_names:

["Year","Month","DayofMonth","DayOfWeek","DepTime","CRSDepTime","ArrTime","CRSA

rrTime","UniqueCarrier","FlightNum","TailNum","ActualElapsedTime","CRSElapsedTi

me","AirTime","ArrDelay","DepDelay","Origin","Dest","Distance","TaxiIn","TaxiOu

t","Cancelled","CancellationCode","Diverted","CarrierDelay","WeatherDelay","NAS

Delay","SecurityDelay","LateAircraftDelay","IsArrDelayed","IsDepDelayed"]

 column_types:

["Enum","Enum","Enum","Enum","Numeric","Numeric","Numeric","Numeric","Enum","En

um","Enum","Numeric","Numeric","Numeric","Numeric","Numeric","Enum","Enum","Num

H2O

 23

eric","Numeric","Numeric","Enum","Enum","Numeric","Numeric","Numeric","Numeric"

,"Numeric","Numeric","Enum","Enum"]

 delete_on_done: true

 check_header: 1

 chunk_size: 4194304

Observe that the parameters you have set up in the configuration box are listed in the

above code. Now, run this cell. After a while, the parsing completes and you will see the

following output:

Examining Dataframe

After the processing, it generates a dataframe, which can be examined using the following

statement:

getFrameSummary "allyears2k.hex"

Upon execution of the above statement, you will see the following output:

H2O

 24

Now, your data is ready to be fed into a Machine Learning algorithm.

The next statement is a program comment that says we will be using the regression model

and specifies the preset regularization and the lambda values.

Building the Model

Next, comes the most important statement and that is building the model itself. This is

specified in the following statement:

buildModel 'glm',

{"model_id":"glm_model","training_frame":"allyears2k.hex","ignored_columns":["D

ayofMonth","DepTime","CRSDepTime","ArrTime","CRSArrTime","TailNum","ActualElaps

edTime","CRSElapsedTime","AirTime","ArrDelay","DepDelay","TaxiIn","TaxiOut","Ca

ncelled","CancellationCode","Diverted","CarrierDelay","WeatherDelay","NASDelay"

,"SecurityDelay","LateAircraftDelay","IsArrDelayed"],"ignore_const_cols":true,"

response_column":"IsDepDelayed","family":"binomial","solver":"IRLSM","alpha":[0

.5],"lambda":[0.00001],"lambda_search":false,"standardize":true,"non_negative":

false,"score_each_iteration":false,"max_iterations":-

1,"link":"family_default","intercept":true,"objective_epsilon":0.00001,"beta_ep

silon":0.0001,"gradient_epsilon":0.0001,"prior":-1,"max_active_predictors":-1}

We use glm, which is a Generalized Linear Model suite with family type set to binomial.

You can see these highlighted in the above statement. In our case, the expected output is

binary and that is why we use the binomial type. You may examine the other parameters

by yourself; for example, look at alpha and lambda that we had specified earlier. Refer to

the GLM model documentation for the explanation of all the parameters.

Now, run this statement. Upon execution, the following output will be generated:

H2O

 25

Certainly, the execution time would be different on your machine. Now, comes the most

interesting part of this sample code.

Examining Output

We simply output the model that we have built using the following statement:

getModel "glm_model"

Note the glm_model is the model ID that we specified as model_id parameter while

building the model in the previous statement. This gives us a huge output detailing the

results with several varying parameters. A partial output of the report is shown in the

screenshot below:

As you can see in the output, it says that this is the result of running the Generalized

Linear Modeling algorithm on your dataset.

H2O

 26

Right above the SCORING HISTORY, you see the MODEL PARAMETERS tag, expand it and

you will see the list of all parameters that are used while building the model. This is shown

in the screenshot below.

Likewise, each tag provides a detailed output of a specific type. Expand the various tags

yourself to study the outputs of different kinds.

Building Another Model

Next, we will build a Deep Learning model on our dataframe. The next statement in the

sample code is just a program comment. The following statement is actually a model

building command. It is as shown here:

buildModel 'deeplearning',

{"model_id":"deeplearning_model","training_frame":"allyears2k.hex","ignored_col

umns":["DepTime","CRSDepTime","ArrTime","CRSArrTime","FlightNum","TailNum","Act

ualElapsedTime","CRSElapsedTime","AirTime","ArrDelay","DepDelay","TaxiIn","Taxi

Out","Cancelled","CancellationCode","Diverted","CarrierDelay","WeatherDelay","N

ASDelay","SecurityDelay","LateAircraftDelay","IsArrDelayed"],"ignore_const_cols

":true,"response_column":"IsDepDelayed","activation":"Rectifier","hidden":[200,

200],"epochs":"100","variable_importances":false,"balance_classes":false,"check

point":"","use_all_factor_levels":true,"train_samples_per_iteration":-

H2O

 27

2,"adaptive_rate":true,"input_dropout_ratio":0,"l1":0,"l2":0,"loss":"Automatic"

,"score_interval":5,"score_training_samples":10000,"score_duty_cycle":0.1,"auto

encoder":false,"overwrite_with_best_model":true,"target_ratio_comm_to_comp":0.0

2,"seed":6765686131094811000,"rho":0.99,"epsilon":1e-

8,"max_w2":"Infinity","initial_weight_distribution":"UniformAdaptive","classifi

cation_stop":0,"diagnostics":true,"fast_mode":true,"force_load_balance":true,"s

ingle_node_mode":false,"shuffle_training_data":false,"missing_values_handling":

"MeanImputation","quiet_mode":false,"sparse":false,"col_major":false,"average_a

ctivation":0,"sparsity_beta":0,"max_categorical_features":2147483647,"reproduci

ble":false,"export_weights_and_biases":false}

As you can see in the above code, we specify deeplearning for building the model with

several parameters set to the appropriate values as specified in the documentation of

deeplearning model. When you run this statement, it will take longer time than the GLM

model building. You will see the following output when the model building completes, albeit

with different timings.

Examining Deep Learning Model Output

This generates the kind of output, which can be examined using the following statement

as in the earlier case.

getModel "deeplearning_model"

H2O

 28

We will consider the ROC curve output as shown below for quick reference.

Like in the earlier case, expand the various tabs and study the different outputs.

Saving the Model

After you have studied the output of different models, you decide to use one of those in

your production environment. H20 allows you to save this model as a POJO (Plain Old Java

Object).

H2O

 29

Expand the last tag PREVIEW POJO in the output and you will see the Java code for your

fine-tuned model. Use this in your production environment.

Next, we will learn about a very exciting feature of H2O. We will learn how to use AutoML

to test and rank various algorithms based on their performance.

H2O

 30

To use AutoML, start a new Jupyter notebook and follow the steps shown below.

Importing AutoML

First import H2O and AutoML package into the project using the following two statements:

import h2o

from h2o.automl import H2OAutoML

Initialize H2O

Initialize h2o using the following statement:

h2o.init()

5. H2O — AutoML in H2O

H2O

 31

You should see the cluster information on the screen as shown in the screenshot below:

Loading Data

We will use the same iris.csv dataset that you used earlier in this tutorial. Load the data

using the following statement:

data = h2o.import_file('iris.csv')

Preparing Dataset

We need to decide on the features and the prediction columns. We use the same features

and the predication column as in our earlier case. Set the features and the output column

using the following two statements:

features = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']

output = 'class'

H2O

 32

Split the data in 80:20 ratio for training and testing:

train, test = data.split_frame(ratios=[0.8])

Applying AutoML

Now, we are all set for applying AutoML on our dataset. The AutoML will run for a fixed

amount of time set by us and give us the optimized model. We set up the AutoML using

the following statement:

aml = H2OAutoML(max_models = 30, max_runtime_secs=300, seed = 1)

The first parameter specifies the number of models that we want to evaluate and compare.

The second parameter specifies the time for which the algorithm runs.

We now call the train method on the AutoML object as shown here:

aml.train(x = features, y = output, training_frame = train)

We specify the x as the features array that we created earlier, the y as the output variable

to indicate the predicted value and the dataframe as train dataset.

Run the code, you will have to wait for 5 minutes (we set the max_runtime_secs to 300)

until you get the following output:

Printing the Leaderboard

When the AutoML processing completes, it creates a leaderboard ranking all the 30

algorithms that it has evaluated. To see the first 10 records of the leaderboard, use the

following code:

lb = aml.leaderboard

lb.head()

H2O

 33

Upon execution, the above code will generate the following output:

Clearly, the DeepLearning algorithm has got the maximum score.

Predicting on Test Data

Now, you have the models ranked, you can see the performance of the top-rated model

on your test data. To do so, run the following code statement:

preds = aml.predict(test)

The processing continues for a while and you will see the following output when it

completes.

Printing Result

Print the predicted result using the following statement:

print (preds)

H2O

 34

Upon execution of the above statement, you will see the following result:

Printing the Ranking for All

If you want to see the ranks of all the tested algorithms, run the following code statement:

lb.head(rows=lb.nrows)

Upon execution of the above statement, the following output will be generated (partially

shown):

H2O

 35

Conclusion

H2O provides an easy-to-use open source platform for applying different ML algorithms

on a given dataset. It provides several statistical and ML algorithms including deep

learning. During testing, you can fine tune the parameters to these algorithms. You can

do so using command-line or the provided web-based interface called Flow. H2O also

supports AutoML that provides the ranking amongst the several algorithms based on their

performance. H2O also performs well on Big Data. This is definitely a boon for Data

Scientist to apply the different Machine Learning models on their dataset and pick up the

best one to meet their needs.

