tutorialspoint

www.tutorialspoint.com

‘1 https://www.facebook.com/tutorialspointindia 43 https://twitter.com/tutorialspoint

H20

About the Tutorial

H20 is an open source Machine Learning framework with full-tested implementations of
several widely-accepted ML algorithms. You just have to pick up the algorithm from its
huge repository and apply it to your dataset. It contains the most widely used statistical
and ML algorithms.

H20 provides an easy-to-use open source platform for applying different ML algorithms
on a given dataset. It provides several statistical and ML algorithms including deep
learning.

In this tutorial, we will consider examples and understand how to go about working with
H20.

Audience

This tutorial is designed to help all those learners who are aiming to develop a Machine
Learning model on a huge database.

Prerequisites

It is assumed that the learner has a basic understanding of Machine Learning and is
familiar with Python.

Copyright & Disclaimer

© Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

|\ tutorials

EIMPLYEAGSY LEARMNING

mailto:contact@tutorialspoint.com

H20

Table of Contents

ADOUL the TULOTTAl c..eeiieieeieee ettt sb e bt e et et e b e b e e b e e reeresmnesanes i
YT e 1= o TP PP ST PR PSPPI i
e =T =T o UL =TT PP TP PO PPPPPTRTRN i
(00T 03V T4 o A D T =1 ' =Y USRI i
TABIE OF CONTENTS ...ttt et s e et e st e st e st e e et esabe e s bt e sabeesaneesabeesaneess i
1. H20 — INtrodUCHION.....ccccurniiiiiiiiiiiinereeet s eer et sss e sass e s s s s s saas s e e s s s s s s ssans e e s s ssssssssnnsnensssses 1
P 1 b0 T [T - | o T o N 2
Ta Ty =1 T T 2 V2 2 Vo o SRS 2
INSEAIT TN R ettt ettt et s h e b ekt e e e e s bt e s bt e s bt e bt e bt e ae e e ae e e b e e bt e b e e b e sa b e s aeesheenbeenbe e bt eaeeene 5
INSEAIl iN R FrOM CRAN ...ttt ettt et s e st s bt e st e e bt et e at e e b e e b e e b e et e sabesaeesbeesbeenbeenteenteans 8
INSTAIING WED GUI FIOW ...eviiiiiiee ettt ettt e st e e ettt e e e e tte e e s tte e e e eabaeeeeastaeesabaaesaabaaeeesraeeennsaaeessseaaans 9
Install on HAadoop / ANACONTA CIOUMcc.eiirieieieie ettt ettt seeste s e ese e e e sesesaesbesneenaensans 11
Developing in COMMANd PrOMPLii ittt ettt sttt st et e st e e ae e e sareesnseesaseenanes 12
RUNNING IN JUPYEET .ttt et s et e s e s b e e s nn e e e sna e e s e anr e e e sennneeesnneeeeas 14
Applying a Different AlGOrENMcocuii et saee e 15
T 1 L0 TR 0 B TN 17
) =Y (o T 2 171 @ 3 Uo YU PURPNS 17
4. H20 — Running H20 Sample ApPlicationccceeeiiiiiiiiimeeiciiiiiieineessessireennessssesssesesnnssssssssssssnnnsssssssanes 19
ClEATNG All QULPULS .. eeeeiee i ettt ettt e e e e st e e e e e st et e e e e e e e se s baareeaeeesasbasaeeaeessassstaeeesessanssssaneeasssnnssnsees 19
RUNNING the FIrSt CelL.....eeiiiieiee et e e s e e e e e s ettt e e e e e e seaabtaeeeeeeseaastaaseeeesesanssannnanens 20
Taa]oTeluulaT-A D | - PP PPPT TP 21
SEHING UP DAta ParSEr cooiiiieiiiiiiiiiieeiiette ettt e e ettt e e e s s sttt e e e e s e s sbataeeeesssassbataeaeessssssnsaaaeesssansnnees 21
EX@MINING DAtaflame ..cccceiiiiciie et e et e e st e e e st e e e et e e e s et e e e e ateeeeeaereee s naeeeanteeeeannreeeenreeeann 23
20T o g =484 a Y= 1Y/ o Yo =Y S 24
a1 a1 aT =A@ TUL 4 TU | N 25
S TUT 1o [T oY= AN g Yo d o YT 1Y oo =] IS UURR 26
ii

[]

EIMPLYEAGSY LEARMNING

|\ tutorials

H20

Examining Deep Learning Model QULPULueiiiiiiie ettt e e e e e e s ere e e snae e e e snte e e e snnaeeesnnseeeans 27
T VA L= a o o TN 1 o Yo =Y RSP RN 28
H20 — AULOIVIL iN H20uniiiiiiiiiiiiiieeiiiieeeiieeesssssessssssesssssssesssssssessssasessessasessessssessssssessessanesssssnneses 30
IMPOTEING AULOIMIL .ot s et e e s a e e e s et e e e re s e sennne e e snaeeeeas 30
INTEIAIIZE H20 ettt e s et e s b bt e bt e e sab e e e ae e e sase e bt e e sabeenbeeesmbeeeneeesaneenees 30
LOAAING DAt .eeiiiieiiieiiteete ettt sttt h ettt et e h bt e h et s h b e e e at e e sha e e bt e e shbe e ne e e nabeenneeesareenntes 31
PreParing Datasel.......uii it e s s e snree e 31
F Y oY 1AV oY= YU 1o] SR 32
Printing the LEAd@rDOardooioiiiieiic ettt e e e e e e ae e e et tr e e e e aeae e e sasaeeeestaeeeennaeeesnnreeeans 32
(g To [Totd g Y=o Y T =T A D 1 - [SRR 33
AT o N] o= ST U] SRR 33
Printing the RaNKING FOr All.........oo ittt e e st e e e e st r e e e e ate e e s tbe e e e staeeseasaeeesasaeeeans 34
(00T ol 11 [o ISR 35

iii
[]

EIMPLYEAGSY LEARMNING

|\ tutorials

Have you ever been asked to develop a Machine Learning model on a huge database?
Typically, the customer will provide you the database and ask you to make certain
predictions such as who will be the potential buyers; if there can be an early detection of
fraudulent cases, etc. To answer these questions, your task would be to develop a Machine
Learning algorithm that would provide an answer to the customer’s query. Developing a
Machine Learning algorithm from scratch is not an easy task and why should you do this
when there are several ready-to-use Machine Learning libraries available in the market.

These days, you would rather use these libraries, apply a well-tested algorithm from these
libraries and look at its performance. If the performance were not within acceptable limits,
you would try to either fine-tune the current algorithm or try an altogether different one.

Likewise, you may try multiple algorithms on the same dataset and then pick up the best
one that satisfactorily meets the customer’s requirements. This is where H20 comes to
your rescue. It is an open source Machine Learning framework with full-tested
implementations of several widely-accepted ML algorithms. You just have to pick up the
algorithm from its huge repository and apply it to your dataset. It contains the most widely
used statistical and ML algorithms.

To mention a few here it includes gradient boosted machines (GBM), generalized linear
model (GLM), deep learning and many more. Not only that it also supports AutoML
functionality that will rank the performance of different algorithms on your dataset, thus
reducing your efforts of finding the best performing model. H20 is used worldwide by more
than 18000 organizations and interfaces well with R and Python for your ease of
development. It is an in-memory platform that provides superb performance.

In this tutorial, you will first learn to install the H20 on your machine with both Python
and R options. We will understand how to use this in the command line so that you
understand its working line-wise. If you are a Python lover, you may use Jupyter or any
other IDE of your choice for developing H20 applications. If you prefer R, you may use
RStudio for development.

In this tutorial, we will consider an example to understand how to go about working with
H20. We will also learn how to change the algorithm in your program code and compare
its performance with the earlier one. The H20 also provides a web-based tool to test the
different algorithms on your dataset. This is called Flow.

The tutorial will introduce you to the use of Flow. Alongside, we will discuss the use of
AutoML that will identify the best performing algorithm on your dataset. Are you not
excited to learn H20? Keep reading!

|\ tutorials

EIMPLYEAGSY LEARMNING

2. H20 — Installation

H20 can be configured and used with five different options as listed below:
e Install in Python
e Installin R
e Web-based Flow GUI
e Hadoop
e Anaconda Cloud

In our subsequent sections, you will see the instructions for installation of H20 based on
the options available. You are likely to use one of the options.

Install in Python

To run H20 with Python, the installation requires several dependencies. So let us start
installing the minimum set of dependencies to run H20.

Installing Dependencies

To install a dependency, execute the following pip command:

$ pip install requests

Open your console window and type the above command to install the requests package.
The following screenshot shows the execution of the above command on our Mac machine:

[BN) [MLO1 — -bash — 128x11 |
IDrs-MacBook-Pro:ML@1 sarang-pro$ pip install requests |
Requirement already satisfied: requests in /anaconda3/lib/python3.7/site-packages (2.21.0)

Requirement already satisfied: certifi>=2017.4.17 in /anaconda3/lib/python3.7/site-packages (from requests) (2018.11.29)
Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /anaconda3/lib/python3.7/site-packages (from requests) (3.0.4)
Requirement already satisfied: urllib3<1.25,>=1.21.1 in /anaconda3/lib/python3.7/site-packages (from requests) (1.24.1)
Requirement already satisfied: idna<2.9,>=2.5 in /anaconda3/lib/python3.7/site-packages (from requests) (2.8)
Drs-MacBook-Pro:MLO1 sarang-pro$

After installing requests, you need to install three more packages as shown below:

$ pip install tabulate
$ pip install "colorama>=0.3.8"

$ pip install future

The most updated list of dependencies is available on H20 GitHub page. At the time of
this writing, the following dependencies are listed on the page.

python

' tutorialspoint

EIMPLYEAGSYLEARNING

H20

pip >=9.0.1
setuptools
colorama>=0.3.7

future»=0.15.2

Removing Older Versions

After installing the above dependencies, you need to remove any existing H20 installation.
To do so, run the following command:

$ pip uninstall h2o

Installing the Latest Version

Now, let us install the latest version of H20 using the following command:

$ pip install -f http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Py.html
h2o

After successful installation, you should see the following message display on the screen:

Installing collected packages: h2o
Successfully installed h20-3.26.0.1

Testing the Installation

To test the installation, we will run one of the sample applications provided in the H20
installation. First start the Python prompt by typing the following command:

$ Python3

Once the Python interpreter starts, type the following Python statement on the Python
command prompt:

>>>import h2o

The above command imports the H20 package in your program. Next, initialize the H20
system using the following command:

>>>h20.init()

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

Your screen would show the cluster information and should look the following at this stage:

® MLO1 — python3 » java — 132x30
>>> h20.init()
Checking whether there is an H20 instance running at http://localhost:54321 not found.

Attempting to start a local H20 server...

Java Version: java version "1.8.0_161"; Java(TM) SE Runtime Environment (build 1.8.0_161-b12); Java HotSpot(TM) 64-Bit Server VM (
build 25.161-b12, mixed mode)

Starting server from /anaconda3/lib/python3.7/site-packages/h2o/backend/bin/h2o0.jar

Ice root: /var/folders/t@/_mlz3t4d6fllqhrdpn2k8_h80000gp/T/tmpknysnipk

JVM stdout: /var/folders/t@/_mlz3t4d6fl1lqghrdpn2k8_h80000gp/T/tmpknysnipk/h20_sarang_pro_started_from_python.out

JVM stderr: /var/folders/t@/_mlz3t4d6fl1lqhrdpn2k8_h80000gp/T/tmpknysnipk/h2o_sarang_pro_started_from_python.err

Server is running at http://127.0.0.1:54325

Connecting to H20 server at http://127.0.0.1:54325 ... successful.
H20 cluster uptime: 01 secs

H20 cluster timezone: Asia/Kolkata

H20 data parsing timezone: UTC

H20 cluster version: 3.26.0.1

H20 cluster version age: 1 day

H20 cluster name: H20_from_python_sarang_pro_vwxrcr

H20 cluster total nodes: 1

H20 cluster free memory: 3.556 Gb

H20 cluster total cores: 0

H20 cluster allowed cores: @

H20 cluster status: accepting new members, healthy

H20 connection url: http://127.0.0.1:54325

H20 connection proxy:

H20 internal security: False

H20 API Extensions: Amazon S3, XGBoost, Algos, AutoML, Core V3, Core V4
Python version: 3.7.1 final

>>> I

Now, you are ready to run the sample code. Type the following command on the Python
prompt and execute it.

>>>h2o0.demo("glm")

The demo consists of a Python notebook with a series of commands. After executing each
command, its output is shown immediately on the screen and you will be asked to hit the
key to continue with the next step. The partial screenshot on executing the last statement
in the notebook is shown here:

0@ MLO1 — python3 » java — 114x28
performance.show()

ModelMetricsBinomialGLM: glm
% Reported on test data. **x

MSE: 0.21345433093275104

RMSE: 0.46201118052786455

LoglLoss: 0.6161040611789249

Null degrees of freedom: 107

Residual degrees of freedom: 102

Null deviance: 142.0080191486303

Residual deviance: 133.0784772146478

AIC: 145.0784772146478

AUC: 0.697373429767796

pr_auc: 0.525055264468805

Gini: 0.3947468595355921

Confusion Matrix (Act/Pred) for max fl1 @ threshold = 0.2386917510522823:
0 1 Error Rate

0 27 44 0.6197 (44.0/71.0)

1 3 34 0.0811 (3.0/37.0)

Total 3@ 78 0.4352 (47.0/108.0)

Maximum Metrics: Maximum metrics at their respective thresholds

metric threshold value idx

max f1 0.238692 0.591304 77

|\ tutorials

EIMPLYEAEGBYLEARNINTIG

H20

At this stage your Python installation is complete and you are ready for your own
experimentation.

InstallinR

Installing H20 for R development is very much similar to installing it for Python, except
that you would be using R prompt for the installation.

Starting R Console

Start R console by clicking on the R application icon on your machine. The console screen
would appear as shown in the following screenshot:

iy @& R Console

LRmGEQ T 2 L8

-~ G\«.

R version 3.6.1 (2819-@7-85) -- "Action of the Toes"
Copyright (C) 2819 The R Foundation for Statistical Computing
Platform: x86_gd4-apple-darwinl5.6.8 (64-bit)

R 1s free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute 1t under certain conditions.
Type "license(}' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a cellaborative project with many contributors.
Type "contributors()' for more informotion and
'citation(}' on how to cite R or R packages in publications.

Type 'demo(D" for some demos, "help()' for on-line help, or
'help.start(}" for an HTML browser interface to help.
Type "g()' to quit R.

During startup - Warning messages:

1: Setting LC_CTYPE faoiled, using "C"

Z2: Setting LC_COLLATE failed, using "C"

3: Setting LC_TIME failed, using "C"

4: Setting LC_MESSAGES failed, wsing "C"

5: Setting LC_MOMETARY failed, using "C"

[R.app GUI 1.78 (7684) x86_bd4-apple-darwinl5.6.@]

WARMING: You're using a non-UTF8 locale, therefore only ASCII characters will work.
Please read R for Mac 0% X FAQ (see Help) section 9 and adjust your system preferences
accordingly.

[Workspace restored from JUsers/drsarang/.RData]

[History restored from JUsers/drsarang/.Rapp.history]

=

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

Your H20 installation would be done on the above R prompt. If you prefer using RStudio,
type the commands in the R console subwindow.

Removing Older Versions

To begin with, remove older versions using the following command on the R prompt:

> if ("package:h20" %in% search()) { detach("package:h20", unload=TRUE) }

> if ("h20" %in% rownames(installed.packages())) { remove.packages("h20") }

Downloading Dependencies

Download the dependencies for H20 using the following code:

> pkgs <- c("RCurl"”,"jsonlite")
for (pkg in pkgs) {
if (! (pkg %in% rownames(installed.packages()))) { install.packages(pkg) }

Installing H20
Install H20 by typing the following command on the R prompt:

> install.packages("h20o", type="source", repos=(c("http://h20-
release.s3.amazonaws.com/h2o/latest_stable_R")))

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

The following screenshot shows the expected output:

> install.packages("hZo", type = "source", repos = (c("http://hZo-release.s3.amazonaws.
com/hZos/latest_stable_R")0)

trying URL "http://hZo-release.s3.amazonaws.com/hZo/latest_stable_R/src/contrib/hio_3.2
6.8.1.tar.gz’

Content type 'applications/x-tar’ length 122673891 bytes (117.@ ME)

downloaded 117.8 MB

* installing *source* package *hio’

** using staged installation

*tR

** demo

** inst

** byte-compile and prepare package for lazy loading

** help

*** installing help indices

** puilding package indices

** testing 1f installed package can be loaded from temporary location
** testing if installed package can be loaded from final location

** testing if installed package keeps a record of temporary installation path
* DOME (hZo)

The downloaded source packages are in
‘Sprivatesvars/folders/vs/9935pnys63d4cZtZZ_vghzvE0@@gn,/T/RtmpL@CIdf /downloaded

_packages’

>

There is another way of installing H20 in R.

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

Install in R from CRAN

To install R from CRAN, use the following command on R prompt:

> install.packages("h20o")

You will be asked to select the mirror:

--- Please select a CRAN mirror for use in this session ---

Item

0-Cloud [https]

Algeria [hitps]

Australia (Canberra) [https]
Australia (Melbourne 1) [https]
Australia (Melbourne 2) [https]
Australia (Perth) [https]
Austria [https]

Belgium (Ghent) [hitps]

Brazil (PR) [https]
Brazil (RJ) [https]

Brazil (SP 1) [https]

Brazil (SP 2) [https]

Bulgaria [https]

Chile [https]

China (Hong Kong) [https]
China (Guangzhou) [https]
China (Lanzhou) [https]

China (Shanghai) [https]
Colombia (Cali) [https]

Czech Republic [https]

Cancel Ok

A dialog box displaying the list of mirror sites is shown on your screen. Select the nearest
location or the mirror of your choice.

Testing Installation
On the R prompt, type and run the following code:

> library(h20)
> localH20 = h2o.init()

> demo(h2o.kmeans)

|\ tutorials

EIMPLYEAEGBYLEARNINTIG

H20

The output generated will be as shown in the following screenshot:

o} @ Quartz 2 [*]

K-Means Centers for k =10

S 4 o o o N 0 00
o
S o]
2
w
g
o
E’_ o § 2 - o oo O
m —_
[&]
=
o
L
g
(]
N
2 o oo °© 0o 2 o o
| | | | T T T T T 1
2 4 6 8 10 45 50 55 60 65 70O
centroid age

Your H20 installation in R is complete now.

Installing Web GUI Flow

To install GUI Flow download the installation file from the H20 site. Unzip the downloaded
file in your preferred folder. Note the presence of h2o.jar file in the installation. Run this
file in a command window using the following command:

$ java -jar h2o.jar

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

After a while, the following will appear in your console window.

07-24 16:06:37.304 192.168.1.18:54321 3294 main INFO: H20 started in 7725ms
07-24 16:06:37.304 192.168.1.18:54321 3294 main INFO:

07-24 16:06:37.305 192.168.1.18:54321 3294 main INFO: Open H20 Flow in your
web browser: http://192.168.1.18:54321

07-24 16:06:37.305 192.168.1.18:54321 3294 main INFO:

10

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

To start the Flow, open the given URL http://localhost:54321 in your browser. The
following screen will appear:

G o @ localhost:54321/flowfindex.html i n o ® =

Hzo FLOW Flow - Cell~ Data - Model = Score - Admin~ Help ~

Untitled Flow

Ded +1+ X BEOQa@ Mbr» @ »
Nz & QUTLINE FLOWS CcLIPS HELP
A
Q Help
@ Assistance

Using Flow for the first time?

Routine Description . .
P [# Quickstart Videos
importFiles Import file(s) into H20
B importSqlTable Import SQL table into H,O
Or, view example Flows to explore and learn
B getFrames Get a list of frames in H20 H-0 P P
20,
K splitFrame Split a frame into two or more frames
& mergeFrames Merge two frames into one STAR H20 OM GITHUB!
& getModels Get a list of models in HyO ©) star
f8f pgetGrids Get a list of grid search results in H2O
¥ pgetPredictions Get a list of predictions in H,O GENERAL
= getlJobs Get a list of jobs running in H2O * FlowWeb Ul ...
ity runAutoML Automatically train and tune many ¢ ... Importing Data
models ¢ ... Building Models
. s ... Making Predictions
® buildModel Build a model R
¢ ... Using Flows
& importModel Import a saved model s .. Troubleshooting Flow
¥ predict Make a prediction
EXAMPLES
Flow packs are a great way to explore and
learn H2O. Try out these Flows and run them
in your browser.
Browse installed packs...
H20 REST API
* Routes
* Schemas
@ Ready Connections: 0 "'20

At this stage, your Flow installation is complete.

Install on Hadoop / Anaconda Cloud

Unless you are a seasoned developer, you would not think of using H20 on Big Data. It is
sufficient to say here that H20 models run efficiently on huge databases of several
terabytes. If your data is on your Hadoop installation or in the Cloud, follow the steps
given on H2O0 site to install it for your respective database.

11

|\ tutorials

EIMPLYEAEGBYLEARNINTIG

http://localhost:54321/

H20

Now that you have successfully installed and tested H20 on your machine, you are ready
for real development. First, we will see the development from a Command prompt. In our
subsequent lessons, we will learn how to do model testing in H20 Flow.

Developing in Command Prompt

Let us now consider using H20 to classify plants of the well-known iris dataset that is
freely available for developing Machine Learning applications.

Start the Python interpreter by typing the following command in your shell window:

$ Python3

This starts the Python interpreter. Import h2o platform using the following command:

>>> import h2o

We will use Random Forest algorithm for classification. This is provided in the
H20RandomForestEstimator package. We import this package using the import statement
as follows:

>>> from h2o.estimators import H20RandomForestEstimator

We initialize the H20 environment by calling its init method.

>>> h2o.init()

On successful initialization, you should see the following message on the console along
with the cluster information.

Checking whether there is an H20 instance running at http://localhost:54321 .
connected.

Now, we will import the iris data using the import_file method in H20.

>>> data = h2o.import_file('iris.csv"')

The progress will display as shown in the following screenshot:

>>> data = h2o.import_file('iris.csv')

Parse progress: | | 100%
>

12

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

After the file is loaded in the memory, you can verify this by displaying the first 10 rows
of the loaded table. You use the head method to do so:

>>> data.head()

You will see the following output in tabular format.

Sepal.LengtH' Sepal.Width Petal.Length Petal.Width Species

.5 Iris-setosa
Iris-setosa
Iris—-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris—setosa
Iris-setosa
Iris-setosa

Iris-setosa

O~ WO =

.4
.9

AU R0 E,ERWM
W WwWWwwwwiwww
P ORRR,OORLN

PRRARRRBRREBRRERRRE
URURNRUWER
D000 ®
RFNNWARNNNNDN

[10 rows x 5 columns]

The table also displays the column names. We will use the first four columns as the
features for our ML algorithm and the last column class as the predicted output. We specify
this in the call to our ML algorithm by first creating the following two variables.

>>> features = ['sepal _length', 'sepal _width', 'petal_length', 'petal width']

>>> output = 'class’

Next, we split the data into training and testing by calling the split_frame method.

>>> train, test = data.split frame(ratios=[0.8])

The data is split in the 80:20 ratio. We use 80% data for training and 20% for testing.

Now, we load the built-in Random Forest model into the system.

>>> model = H20RandomForestEstimator(ntrees=50, max_depth=20, nfolds=10)

In the above call, we set the number of trees to 50, the maximum depth for the tree to
20 and number of folds for cross validation to 10. We now need to train the model. We do
so by calling the train method as follows:

>>> model.train(x=features, y=output, training_frame=train)

The train method receives the features and the output that we created earlier as first two
parameters. The training dataset is set to train, which is the 80% of our full dataset.
During training, you will see the progress as shown here:

13

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

Now, as the model building process is over, it is time to test the model. We do this by
calling the model_performance method on the trained model object.

>>> performance = model.model performance(test_data=test)

In the above method call, we sent test data as our parameter.

It is time now to see the output, which is the performance of our model. You do this by
simply printing the performance.

>>> print (performance)

This will give you the following output:

ModelMetricsMultinomial: drf
*x Reported on test data. **

MSE: 0.06422903817566597

RMSE: 0.2534344849772145

LoglLoss: 0.26687893926473516

Mean Per-Class Error: 0.06666666666666667

Confusion Matrix: Row labels: Actual class; Column labels: Predicted class

Iris—-setosa Iris—-versicolor Iris—virginica Error Rate

15 0 '} 0 @/ 15
'] 9 1 0.1 1/ 10
0 1 9 0.1 1/ 10
15 10 10 0.0571429 2 / 35

Top-3 Hit Ratios:
k hit_ratio
0.942857
0.971429

1

w N

The output shows the Mean Square Error (MSE), Root Mean Square Error (RMSE), LogLoss
and even the Confusion Matrix.

Running in Jupyter

We have seen the execution from the command and also understood the purpose of each
line of code. You may run the entire code in a Jupyter environment, either line by line or
the whole program at a time. The complete listing is given here:

import h2o

from h2o.estimators import H20RandomForestEstimator

14

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

h2o0.init()

data = h2o.import_file('iris.csv')

features = ['sepal _length', 'sepal _width', 'petal_length', 'petal width']
output = 'class'

train, test = data.split_frame(ratios=[0.8])

model = H20RandomForestEstimator(ntrees=50, max_depth=20, nfolds=10)
model.train(x=features, y=output, training_frame=train)

performance = model.model performance(test_data=test)

print (performance)

Run the code and observe the output. You can now appreciate how easy it is to apply and
test a Random Forest algorithm on your dataset. The power of H20 goes far beyond this
capability. What if you want to try another model on the same dataset to see if you can
get better performance. This is explained in our subsequent section.

Applying a Different Algorithm

Now, we will learn how to apply a Gradient Boosting algorithm to our earlier dataset to
see how it performs. In the above full listing, you will need to make only two minor changes
as highlighted in the code below:

import h2o

from h2o.estimators import H20GradientBoostingEstimatonr

h2o.init()

data = h2o.import_file('iris.csv")

features = ['sepal length', 'sepal width', 'petal_length', 'petal width']
output = 'class'

train, test = data.split_frame(ratios=[0.8])

model = H20GradientBoostingEstimator (ntrees=50, max_depth=20, nfolds=10)
model.train(x=features, y=output, training_frame=train)

performance = model.model performance(test_data=test)

print (performance)

Run the code and you will get the following output:

15

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

MSE: 8.565829003623468e-05

RMSE: 0.009255176391416571

LogLoss: 0.0057079992514431225

Mean Per-Class Error: 0.0

Confusion Matrix: Row labels: Actual class; Column labels: Predicted class

Iris-setosa Iris-versicolor Iris-virginica Error Rate
16.0 0.0 0.0 0.0 0/16

0.0 13.0 0.0 0.0 0/13

0.0 0.0 10.0 0.0 0/10

16.0 13.0 10.0 0.0 0/39

Top-3 Hit Ratios:

k hit_ratio
1 1.0
2 1.0
3 1.0

Just compare the results like MSE, RMSE, Confusion Matrix, etc. with the previous output
and decide on which one to use for production deployment. As a matter of fact, you can
apply several different algorithms to decide on the best one that meets your purpose.

16

|\ tutorials

EIMPLYEAGSY LEARMNING

3. H20 — H20 Flow

In the last lesson, you learned to create H20 based ML models using command line
interface. H20 Flow fulfils the same purpose, but with a web-based interface.

In the following lessons, I will show you how to start H20 Flow and to run a sample
application.

Starting H20 Flow

The H20 installation that you downloaded earlier contains the h2o.jar file. To start H20
Flow, first run this jar from the command prompt:

$ java -jar h2o.jar

When the jar runs successfully, you will get the following message on the console:

Open H20 Flow in your web browser: http://192.168.1.10:54321

17

' tutorialspoint

EIMPLYEASY LEARNING

H20

Now, open the browser of your choice and type the above URL. You would see the H20
web-based desktop as shown here:

&« ¢ @ @ localhost:54321/flowfindex.html v ¥y in @ @ =

Hzo FLOW Flow~ Cell~ Data~ Model Score - Admin - Help~

Untitled Flow

Dea +4+4 X EOJgaE2@T WP » »

Cs assist & OUTLIME FLOWS CLIPS HELP
A
844ms Q Help L
© Assistance

Using Flow for the first time?

Routine Description @ Quickstart Videos
importFiles Import file(s) into H20
B importSqlTable Import SQL table into H,O _
B getFrames Get a list of frames in H20 3;,0v‘|ew example Flows to explore and learn
k4 splitFrame Split a frame into two or more frames
& mergeFrames Merge two frames into one STAR HZ0 ON GITHUB!
& getModels Get a list of models in H;0 ©) star
fif getGrids Get a list of grid search results in H20
GENERAL

getPredictions Get a list of predictions in H;O

= getJobs Get a list of jobs running in H20 * Flow Web Ul ...
it runAutoML Automatically train and tune many medels * ... Importing Data
§ . e ... Building Models
& buildModel Build a model « .. Making Predictions
@ importModel Import a saved model e .. Using Flows
¥ predict Make a prediction s ... Troubleshooting Flow
® Ready Connections: 0 H,0

This is basically a notebook similar to Colab or Jupyter. I will show you how to load and
run a sample application in this notebook while explaining the various features in Flow.
Click on the view example Flows link on the above screen to see the list of provided
examples.

I will describe the Airlines delay Flow example from the sample.

18

|\ tutorials

EIMPLYEAEGBYLEARNINTIG

4. H20 — Running H20 Sample Application

Click on the Airlines Delay Flow link in the list of samples as shown in the screenshot
below:

OUTLINE FLOWS CLIPS HELP

@ Help f“a € -
PACK
examples

B GBM_Example.flow
DeepLearning MNIST.flow
GLM_Example.flow

B DRF_Example.flow

B K-Means_Example.flow

B Million_Songs.flow

= KDDCup2009_Churn.flow
QuickStartVideos.flow

B Airlines_Delay.flow
[© GBM_Airlines_Classification.flow

GBM_GridSearch.flow
RandomData_Benchmark_Small.flow
B GBM_TuningGuide.flow

B XGBoost_Example.flow

After you confirm, the new notebook would be loaded.

Clearing All Outputs

Before we explain the code statements in the notebook, let us clear all the outputs and
then run the notebook gradually. To clear all outputs, select the following menu option:

19

' tutorialspoint

EIMPLYEASY LEARNING

H20

Flow / Clear All Cell Contents

This is shown in the following screenshot:

&« ¢ o @ localhost:54321/flow/index. html# W ¥ In @@ =
H2° FLOW Flow~ Cell ~ Data~ Model ~ Score~ Admin - Help~
Airlines_Delay New Flow
0D e @ 4+ 4 OpenFlow. » @ »
Save Flow s
Make a Copy. QUTLINE FLOWS CLIPS HELP
* Predictin 'S
0 & ¢
Run All Cells = HEID
Tr!e following is a dem Run Al Cells Below 1t delays using a publicly avallable. airlines c!ataseL For PACK
this example, the datas iore than two decades worth of flight data in order to
ensure the download a ire than a minute or two. examples

Toggle All Cell Inputs
B GBM_Example.flow

Toggle All Cell Outputs
The Data Clear All Cell Outputs B DeepLearning MNIST.flow
The data comes origin: detail. To use the entire 26 years worth of flight B GLM_Example.flow
information to more ac Download this Flow... on please download one of the following and change
the path to the data in [® DRF_Example.flow
+ 2 Thousand Rows - 4.3MB B K-Means_Example.flow
« 5.8 Million Rows - 580MB B Million_Songs.flow

+ 152 Million Rows (Years: 1987-2013) - 14.5GB
B KDDCup2009_Churn.flow

Business Benefits B QuickStartVideos flow

There are obvious benefits to predicting potential delays and logistic issues for a business. It helps the user make B Airlines_Delay.flow

contingency plans and corrections te avoid undesirable outcomes. Recommendation engines can forewarn flyers of [GBM_Airlines_Classification.flow
possible delays and rank flight options accordingly, other businesses might pay more for a flight to ensure certain

shipments arrive on time, and airline carriers can use the information to better their flight plans. The goal is to have
the machine take in all the possible factors that will affect a flight and return the probability of a flight being B RandomData_Benchmark_Small.flow
delayed.

B GBM_GridSearch.flow

B GBM_TuningGuide.flow

importFiles ["https://s3.amazonaws.com/h2o-airlines-unpacked/allyears2k.csv"] 4 B XGBoost_Example.flow

Vi
setupParse paths: ["https://s3.amazonaws.com/h2o-airlines-unpacked @
J/allyearsZk.csv"]

A

&

parsefFiles

localhost:54321/flow/index.html# Connections: 0 H,O

Once all outputs are cleared, we will run each cell in the notebook individually and examine
its output.

Running the First Cell

Click the first cell. A red flag appears on the left indicating that the cell is selected. This is
as shown in the screenshot below:

Predicting Airline Delays &

The following is a demonstration of predicting potential flight delays using a
publicly available airlines dataset. For this example, the dataset used is a small
sample of what is more than two decades worth of flight data in order to ensure
the download and import process would not take more than a minute or two.

20

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

The contents of this cell are just the program comment written in MarkDown (MD)
language. The content describes what the loaded application does. To run the cell, click
the Run icon as shown in the screenshot below:

Ded +1+dy X EQOgew MbPb» 0

Run and Select Below
Predicting Airline Delays

You will not see any output underneath the cell as there is no executable code in the
current cell. The cursor now moves automatically to the next cell, which is ready to
execute.

Importing Data

The next cell contains the following Python statement:

importFiles ["https://s3.amazonaws.com/h2o0-airlines-unpacked/allyears2k.csv"]

The statement imports the allyears2k.csv file from Amazon AWS into the system. When
you run the cell, it imports the file and gives you the following output.

importFiles ["https://s3.amazonaws.com/h2o-airlines-unpacked/allyears2k.csv" 1 @

&> 1/ 1 files imported.

Files 4 https://s3.amazonaws.com/h2o-airlines-unpacked/allyears2k.csv

Actions £ Parse these files...

Setting Up Data Parser

Now, we need to parse the data and make it suitable for our ML algorithm. This is done
using the following command:

setupParse paths: ["https://s3.amazonaws.com/h2o0-airlines-
unpacked/allyears2k.csv"]

21

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

Upon execution of the above statement, a setup configuration dialog appears. The dialog
allows you several settings for parsing the file. This is as shown in the screenshot below:

setupParse paths: ["https://s3.amazonaws.com/hZo-airlines-unpacked/allyearsZk.csv"] é
y7
L Setup Parse
PARSE COMFIGURATION
Sources M https://s3.amazonaws.com/h20-airlines-unpacked/allyears2k.csv
ID allyears2k.hex
Parser CSV E
Separator = : '044' E
Column Headers Auto
© First row contains column names
First row contains data
Options Enable single quotes as a field quotation character
Delete on done
EDIT COLUMM NAMES AMD TYPES
Search by column name...
1 Year Numeric E 1987 1987 1587 1587 1887 1987 1987 1987 1987

2 Month Numeric E 1@ 18 1@ 10 1@ 10 10 16 18

In this dialog, you can select the desired parser from the given drop-down list and set
other parameters such as the field separator, etc.

Parsing Data

The next statement, which actually parses the datafile using the above configuration, is a
long one and is as shown here:

parseFiles
paths: ["https://s3.amazonaws.com/h2o-airlines-unpacked/allyears2k.csv"]
destination_frame: "allyears2k.hex"
parse_type: "CSV"
separator: 44
number_columns: 31
single_quotes: false

column_names:
["Year","Month", "DayofMonth", "DayOfWeek", "DepTime","CRSDepTime","ArrTime","CRSA

rrTime","UniqueCarrier","FlightNum","TailNum","ActualElapsedTime","CRSElapsedTi
me","AirTime","ArrDelay", "DepDelay", "Origin","Dest","Distance","TaxiIn", "TaxiOu
t","Cancelled","CancellationCode","Diverted"”,"CarrierDelay", "WeatherDelay", "NAS

',"IsArrDelayed", "IsDepDelayed"]

Delay","SecurityDelay","LateAircraftDelay'

column_types:

["Enum™,"Enum", "Enum","Enum", "Numeric", "Numeric", "Numeric", "Numeric","Enum","En

um", "Enum", "Numeric", "Numeric", "Numeric", "Numeric", "Numeric","Enum",

Enum”, "Num

22

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

eric", "Numeric","Numeric"”,"Enum","Enum","Numeric"”, "Numeric","Numeric", "Numeric"
, "Numeric","Numeric","Enum","Enum"]

delete_on_done: true
check_header: 1

chunk_size: 4194304

Observe that the parameters you have set up in the configuration box are listed in the
above code. Now, run this cell. After a while, the parsing completes and you will see the
following output:

=Job
Run Time 00:00:16.85

Remaining Time 00:00:00.0

Type Frame

Key Q, allyears2k.hex
Description Parse
Status DONE
Progress 100%

Done.

Actions Q, View

Examining Dataframe

After the processing, it generates a dataframe, which can be examined using the following
statement:

getFrameSummary "allyears2k.hex"

Upon execution of the above statement, you will see the following output:

e getFrameSummary "allyears2k.hex" é

Bl allyears2k.hex

Actions: = £ View Data ¥ Split... & Build Model... ¥ Predict & Download B Export il Delete
Rows Columns Compressed Size
43978 31 2MB

* COLUMMN SUMMARIES

label type Missing Zeros +Inf -Inf min max mean sigma cardinality Actions

Year enum @ 1999 a ¢} 21.8 = = 22 Convert to numeric
Month enum @ 41979 o] @ 0] 1.@ @.0455 @.2083 2 Convert to numeric
DayofMonth enum @ 1368 a 8 4] 30.0 z : 31 Convert to numeric
DayOfWeek enum @ 5882 a @ 4] 6.8 . . 7 Convert to numeric

23

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

Now, your data is ready to be fed into a Machine Learning algorithm.

The next statement is a program comment that says we will be using the regression model
and specifies the preset regularization and the lambda values.

Building the Model

Next, comes the most important statement and that is building the model itself. This is
specified in the following statement:

buildModel [‘glm’,
{"model id":"glm model", "training_frame":"allyears2k.hex","ignored_columns":["D
ayofMonth", "DepTime", "CRSDepTime","ArrTime","CRSArrTime","TailNum","ActualElaps

edTime","CRSElapsedTime","AirTime","ArrDelay", "DepDelay","TaxiIn","TaxiOut", "Ca

ncelled","CancellationCode", "Diverted","CarrierDelay", "WeatherDelay", "NASDelay"
, "SecurityDelay","LateAircraftDelay", "IsArrDelayed”],"ignore_const_cols":true,"
response_column”:"IsDepDelayed”,family":"binomial®, "solver":"IRLSM","alpha":[@
.5],"lambda":[0.00001], "lambda_search":false, "standardize":true, "non_negative":
false,"score_each_iteration":false,"max_iterations":-

1,"1link":"family_default","intercept":true,"objective_epsilon":0.00001, "beta_ep

silon":0.0001, "gradient_epsilon":0.0001, "prior":-1,"max_active predictors":-1}

We use glm, which is a Generalized Linear Model suite with family type set to binomial.
You can see these highlighted in the above statement. In our case, the expected output is
binary and that is why we use the binomial type. You may examine the other parameters
by yourself; for example, look at alpha and lambda that we had specified earlier. Refer to
the GLM model documentation for the explanation of all the parameters.

Now, run this statement. Upon execution, the following output will be generated:

v=Job
Run Time (Q0:00:08.212

Remaining Time 00:00:00.0
Type Model
Key Q glm_model
Description GLM
Status DOME
Progress 100%,
Done.

Actions Q, View

24

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

Certainly, the execution time would be different on your machine. Now, comes the most
interesting part of this sample code.

Examining Output

We simply output the model that we have built using the following statement:

getModel "glm_model™

Note the glm_model is the model ID that we specified as model_id parameter while
building the model in the previous statement. This gives us a huge output detailing the
results with several varying parameters. A partial output of the report is shown in the
screenshot below:

s getModel "glm_model™ é

S

& Model

Model ID: glm_model
Algorithm: |Gen eralized Linear Modeling
Actions: % Refresh ¥ Predict... & Download POJO & Download Model Deployment Package (MOJQ) B Export
i= Inspect [i] Delete 2 Download Gen Model

P MODEL PARAMETERS

*SCORING HISTORY

0.70]
8.694

.68
.67
0.66
0.65
.64
0.63
0.62
.61
@ .66
@.59
0.58

8.57

T T T T T T T T T T 1
(=] @ L] @ n @ n @ n o
= @ - - ™ ™ M m o+ =+ in

As you can see in the output, it says that this is the result of running the Generalized
Linear Modeling algorithm on your dataset.

25

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

Right above the SCORING HISTORY, you see the MODEL PARAMETERS tag, expand it and
you will see the list of all parameters that are used while building the model. This is shown
in the screenshot below.

* MODEL PARAMETERS

Parameter

model_id

training_frame

seed

response_column

ignored_columns

Value

glm_model

allyears2k.hex
848938326243930370

IsDepDelayed
DayofMonth, DepTime, CRSDepTime, ArfTime,

¥ Show all parameters

Description

Destination id for this model; auto-generated if not
specified.

Id of the training data frame.

Seed for pseudo random number generater (if
applicable)

Response variable column.

Names of columns to ignore for training.

CRSANTime, TailNum, ActualElapsedTime,
CRSElapsedTime, AirTime, ArrDelay, DepDelay, Taxiln,
TaxiOut, Cancelled, CancellationCode, Diverted,
CarrierDelay, WeatherDelay, NASDelay, SecurityDelay,
LateAircraftDelay, IsArrDelayed

family binomial Family. Use binomial for classification with logistic

regression, others are for regression problems.

solver IRLSM AUTO will set the solver based on given data and the
other parameters. IRLSM is fast on on problems with
small number of predictors and for lambda-search with
L1 penalty, L_BFGS scales better for datasets with many

columns.

alpha 0.5 Distribution of regularization between the L1 (Lasso)
and L2 (Ridge) penalties. A value of 1 for alpha
represents Lasso regression, a value of O produces
Ridge regression, and anything in between specifies the
amount of mixing between the two. Default value of

alpha is 0 when SOLVER = 'L-BFGS'"; 0.5 otherwise.

lambda 0.00001 Regularization strength

max_iterations 50 Maximum number of iterations

objective_epsilon 0.00001 Converge if objective value changes less than this.

Likewise, each tag provides a detailed output of a specific type. Expand the various tags
yourself to study the outputs of different kinds.

Building Another Model

Next, we will build a Deep Learning model on our dataframe. The next statement in the
sample code is just a program comment. The following statement is actually a model
building command. It is as shown here:

buildModel 'deeplearning’,
{"model_id":"deeplearning _model","training_ frame":"allyears2k.hex","ignored_col
umns” : ["DepTime", "CRSDepTime","ArrTime", "CRSArrTime", "FlightNum","TailNum", "Act
ualElapsedTime","CRSElapsedTime","AirTime", "ArrDelay", "DepDelay","TaxiIn","Taxi
Out","Cancelled","CancellationCode","Diverted", "CarrierDelay", "WeatherDelay", "N
ASDelay","SecurityDelay", "LateAircraftDelay", "IsArrDelayed"],"ignore_const_cols
":true,"response_column":"IsDepDelayed","activation":"Rectifier","hidden":[200,
200], "epochs":"100", "variable_importances":false, "balance_classes":false, "check
point":"","use_all factor_levels":true,"train_samples_per_iteration":-

26

* INtutorials

k EIMPLYEAGSGYLEARMNINEG

H20

2,"adaptive_rate":true,"input_dropout_ratio":0,"11":0,"12":0,"loss":"Automatic"
,"score_interval":5,"score_training samples":10000, "score_duty_cycle":0.1,"auto
encoder":false, "overwrite_with_best_model":true, "target_ratio_comm_to_comp":0.0
2,"seed":6765686131094811000, "rho":0.99,"epsilon":1le-

8,"max_w2":"Infinity","initial_weight_distribution":"UniformAdaptive","classifi
cation_stop":0,"diagnostics":true,"fast_mode":true, "force_load_balance":true,"s
ingle_node_mode":false,"shuffle_training _data":false,"missing values_handling":
"MeanImputation"”,"quiet_mode":false,"sparse":false,"col_major":false,"average_a
ctivation":0,"sparsity_beta":0,"max_categorical features":2147483647,"reproduci

ble":false, "export_weights_and_biases":false}

As you can see in the above code, we specify deeplearning for building the model with
several parameters set to the appropriate values as specified in the documentation of
deeplearning model. When you run this statement, it will take longer time than the GLM
model building. You will see the following output when the model building completes, albeit
with different timings.

= Job
Run Time (00:01:23.439
Remaining Time (Q0:00:00.0
Type Mode
Key Q, deeplearning_model

Description Deeplearning
Status DONE
Progress 100%
Done.

Actions Q, View

Examining Deep Leaming Model Output

This generates the kind of output, which can be examined using the following statement
as in the earlier case.

getModel "deeplearning_model™

27

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

We will consider the ROC curve output as shown below for quick reference.

- ROC CURWE - TRAININMG METRICS , AUC = 0. 958325

1.4

@.9-

tpr
=
i

L

0.0
0.1
0.2
0.3
0.4
0.6
0.7
0.8
0.9
1.8

fpr

Like in the earlier case, expand the various tabs and study the different outputs.

Saving the Model

After you have studied the output of different models, you decide to use one of those in
your production environment. H20 allows you to save this model as a POJO (Plain Old Java
Object).

28

|\ tutorials

EIMPLYEAEGBYLEARNINTIG

H20

Expand the last tag PREVIEW POJO in the output and you will see the Java code for your
fine-tuned model. Use this in your production environment.

v+ PREVIEW POJO

/*
Licensed under the Apache License, Version 2.0
http://www.apache.org/licenses/LICENSE-2.0.html

AUTOGENERATED BY H20 at 2019-07-24T09:07:25.887+05:30
3.26.0.1

Standalone prediction code with sample test data for DeepLearningModel named deeplearning_model

How to download, compile and execute:
mkdir tmpdir
cd tmpdir
curl http://192.168.1.10:54321/3/h2o-genmodel.jar > h2o-genmodel.jar
curl http://192.168.1.10:54321/3/Models.java/deeplearning_model > deeplearning_model.java
javac -cp h2o-genmodel.jar -J-Xmx2g -J-XX:MaxPermSize=128m deeplearning_model.java

(Note: Try java argument -XX:+PrintCompilation to show runtime JIT compiler behavior.)
*/
import java.util.Map;
import hex.genmodel.GenModel;
import hex.genmodel.annotations.ModelPojo;

@ModelPojo(name="deeplearning_model", algorithm="deeplearning")

public class deeplearning_model extends GenModel {
public hex.ModelCategory getModelCategory() { return hex.ModelCategory.Binomial; }
public boolean isSupervised() { return true; }
public int nfeatures() { return 8; }

Next, we will learn about a very exciting feature of H20. We will learn how to use AutoML
to test and rank various algorithms based on their performance.

29

|\ tutorials

EIMPLYEAGSY LEARMNING

5. H20 — AutoML in H20

To use AutoML, start a new Jupyter notebook and follow the steps shown below.

Importing AutoML

First import H20 and AutoML package into the project using the following two statements:

import h2o
from h2o.automl import H20AutoML

Initialize H20

Initialize h2o using the following statement:

h2o0.init()

30

' tutorialspoint

EIMPLYEASY LEARNING

H20

You should see the cluster information on the screen as shown in the screenshot below:

Checking whether there is an H20 instance running at http://localhost:543
21 . connected.

H20 cluster uptime: & hours 50 mins

H20 cluster timezone: Asia/Kolkata
H20O data parsing

timezone: LITL

H20 cluster version: 3.26.0.1

H20 cluster version age: 8 days

H20 cluster name: H20_from_python_drsarang_xwl2f7

H20 cluster total nodes: 1

H20 cluster free memory: 1.640 Gb

H20 cluster total cores: 4

H20O cluster allowed 4
cores:

H20 cluster status: locked, healthy

H20 connection url: http:/flocalhost:54321

H20 connection proxy: None

H20 internal security: False

Amazon 53, XGBoost,
H20 API Extensions: Algos, AutoML, Core V3,
Core V4

Python version: 3.7.1 final

Loading Data

We will use the same iris.csv dataset that you used earlier in this tutorial. Load the data
using the following statement:

data = h2o.import_file('iris.csv')

Preparing Dataset

We need to decide on the features and the prediction columns. We use the same features
and the predication column as in our earlier case. Set the features and the output column
using the following two statements:

features = ['sepal_length', 'sepal_width', 'petal_length', 'petal width']

output = 'class'

31

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

Split the data in 80:20 ratio for training and testing:

train, test = data.split frame(ratios=[0.8])

Applying AutoML

Now, we are all set for applying AutoML on our dataset. The AutoML will run for a fixed
amount of time set by us and give us the optimized model. We set up the AutoML using
the following statement:

aml = H20AutoML(max_models = 3@, max_runtime_secs=300, seed = 1)

The first parameter specifies the number of models that we want to evaluate and compare.
The second parameter specifies the time for which the algorithm runs.

We now call the train method on the AutoML object as shown here:

aml.train(x = features, y = output, training_frame = train)

We specify the x as the features array that we created earlier, the y as the output variable
to indicate the predicted value and the dataframe as train dataset.

Run the code, you will have to wait for 5 minutes (we set the max_runtime_secs to 300)
until you get the following output:

In [4]: aml = H20AutoML(max models = 30, max runtime secs=300, seed = 1)
aml.train(x = features, y = output, training_ frame = train)

AutoML progress: | | 100%

Printing the Leaderboard

When the AutoML processing completes, it creates a leaderboard ranking all the 30
algorithms that it has evaluated. To see the first 10 records of the leaderboard, use the
following code:

1b = aml.leaderboard

1b.head()

32

|\ tutorials

EIMPLYEAGSY LEARMNING

H20

Upon execution, the above code will generate the following output:

In [5]: 1b = aml.leaderboard
1b.head()
model_id mean_per_class_error logloss rmse mse
Deeplearning_grid_1_AutoML_20190724_093621_model_5 0.0242063 0.183263 0.168803 0.0284945
GLM_grid_1_AutoML_20190724_093621_model_1 0.0329365 0.0821318 0.163528 0.0267412
DeepLearning_grid_1_AutoML_20190724_093621_model_2 0.0400794 0.146651 0.176152 0.0310296
Deeplearning_grid_1_AutoML_20190724_093621_model_3 0.0404762 0.380614 0.206306 0.0425624
DeepLearning_grid_1_AutoML_20190724_093621_model_1 0.0404762 0.235035 0.197036 0.0388231
XGBoost_grid_1_AutoML_20190724_093621_model_1 0.040873 0.261768 0.254817 0.0649319
XGBoost_3_AutoML_20190724_093621 0.040873 0.216579 0.226541 0.0513206
XGBoost_grid_1_AutoML_20190724_093621_model_4 0.040873 0.236032 0.234593 0.0550339
XGBoost_grid_1_AutoML_20190724_093621_model_8 0.040873 0.264083 0.252556 0.0637848
GBM_grid_1_AutoML_20190724_093621_model_5 0.0484127 1.03887 0.646096 0.41744
Out[5]:

Clearly, the DeeplLearning algorithm has got the maximum score.

Predicting on Test Data

Now, you have the models ranked, you can see the performance of the top-rated model
on your test data. To do so, run the following code statement:

preds = aml.predict(test)

The processing continues for a while and you will see the following output when it
completes.

In [6]: preds = aml.predict(test)

deeplearning prediction progress: | | 100%

Printing Result

Print the predicted result using the following statement:

print (preds)

33

|\ tutorials

EIMPLYEAGSY LEARMNING

Upon execution of the above statement, you will see the following result:

In [7]:

predict

print (preds)

Iris-setosa

Iris-versicolor

Iris-virginica

Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

Iris-setosa

Printing the Ranking for All

1

5.9755e-84
1.36587e-89
7.44804e-93
9.43299e-69
4.30297e-104
8.61126e-81
1.0071e-87
1.27847e-66
3.62365e-126

1.78884e-73

3.78831e-119
1.41297e-122
9.46284e-113
8.03646e-137
1.50927e-109
4.86927e-114

4.7494e-109
2.63207e-110
1.28746e-120

2.93488e-121

H20

If you want to see the ranks of all the tested algorithms, run the following code statement:

1b.head(rows=1b.nrows)

Upon execution of the above statement, the following output will be generated (partially

shown):
In [8]: lb.head(rows=lb.nrows) # Entire leaderboard
model_id mean_per_class_error logloss rmse mse
Deeplearning_grid_1_AutoML_20190724_093621_model_5 0.0242063 0.183263 0.168803 0.0284945
GLM_grid_1_AutoML_20190724_093621_model_1 0.0329365 0.0821318 0.163528 0.0267412
Deeplearning_grid_1_AutoML_20190724_093621_model_2 0.0400794 0.146651 0.176152 0.0310296
DeeplLearning_grid_1_AutoML_20190724_093621_model_3 0.0404762 0.380614 0.206306 0.0425624
DeepLearning_grid_1_AutoML_20190724_093621_model_1 0.0404762 0.235035 0.197036 0.0388231
XGBoost_grid_1_AutoML_20190724_093621_model_1 0.040873 0.261768 0.254817 0.0649319
XGBoost_3_AutoML_20190724_093621 0.040873 0.216579 0.226541 0.0513206
XGBoost_grid_1_AutoML_20190724_093621_model_4 0.040873 0.236032 0.234593 0.0550339
XGBoost_grid_1_AutoML_20190724_093621_model_8 0.040873 0.264083 0.252556 0.0637848
GBM_grid_1_AutoML_20190724_093621_model_5 0.0484127 1.03887 0.646096 0.41744
XGBoost_1_AutoML_20190724_093621 0.0484127 0.238629 0.240329 0.0577578
StackedEnsemble_AllModels_AutoML_20190724_093621 0.0488095 0.206523 0.221708 0.0491546
XGBoost_grid_1_AutoML_20190724_093621_model_9 0.0488095 0.350972 0.304498 0.0927193
XGBoost_grid_1_AutoML_20190724_093621_model_3 0.0488095 0.248226 0.244576 0.0598172
GBM_grid_1_AutoML_20190724_093621_model_2 0.0488095 0.809497 0.554183 0.307119
XGBoost_grid_1_AutoML_20190724_093621_model_5 0.0488095 0.267201 0.254058 0.0645454
GBM_4_AutoML_20190724_093621 0.0488095 0.169725 0.213612 0.0456301
DRF_1_AutoML_20190724_093621 0.0488095 0.133552 0.207563 0.0430824
GBM_2_AutoML_20190724_093621 0.0488095 0.180179 0.219544 0.0481994
[]

tutorials

EIMPLYEAEGBYLEARNINTIG

i

34

H20

Conclusion

H20 provides an easy-to-use open source platform for applying different ML algorithms
on a given dataset. It provides several statistical and ML algorithms including deep
learning. During testing, you can fine tune the parameters to these algorithms. You can
do so using command-line or the provided web-based interface called Flow. H20 also
supports AutoML that provides the ranking amongst the several algorithms based on their
performance. H20 also performs well on Big Data. This is definitely a boon for Data
Scientist to apply the different Machine Learning models on their dataset and pick up the
best one to meet their needs.

35

|\ tutorials

EIMPLYEAGSY LEARMNING

