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About the tutorial 

Microsoft Cognitive Toolkit (CNTK), formerly known as Computational Network Toolkit, is 

a free, easy-to-use, open-source, commercial-grade toolkit that enable us to train deep 

learning algorithms to learn like the human brain. It enables us to create some popular 

deep learning systems like feed-forward neural network time series prediction 

systems and Convolutional neural network (CNN) image classifiers. 

Audience 

This tutorial will be useful for graduates, post-graduates, and research students who 

either have an interest in Deep learning or Artificial Neural Networks or have this subject 

as a part of their curriculum. The reader can be a beginner or an advanced learner.  

Prerequisites 

The reader must have basic knowledge about Neural Networks. He/she should also be 

aware about basic terminologies used in Python programming concepts. 

Copyright & Disclaimer 

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point 

(I) Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or 

republish any contents or a part of contents of this e-book in any manner without written 

consent of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely 

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) 

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of 

our website or its contents including this tutorial. If you discover any errors on our 

website or in this tutorial, please notify us at contact@tutorialspoint.com 
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In this chapter, we will learn what is CNTK, its features, difference between its version 

1.0 and 2.0 and important highlights of version 2.7. 

What is Microsoft Cognitive Toolkit (CNTK)? 

Microsoft Cognitive Toolkit (CNTK), formerly known as Computational Network Toolkit, is 

a free, easy-to-use, open-source, commercial-grade toolkit that enables us to train deep 

learning algorithms to learn like the human brain. It enables us to create some popular 

deep learning systems like feed-forward neural network time series prediction 

systems and Convolutional neural network (CNN) image classifiers. 

For optimal performance, its framework functions are written in C++. Although we can 

call its function using C++, but the most commonly used approach for the same is to use 

a Python program.    

CNTK’s Features 

Following are some of the features and capabilities offered in the latest version of 

Microsoft CNTK: 

Built-in components 

 CNTK has highly optimised built-in components that can handle multi-dimensional 

dense or sparse data from Python, C++ or BrainScript. 

 We can implement CNN, FNN, RNN, Batch Normalisation and Sequence-to-

Sequence with attention. 

 It provides us the functionality to add new user-defined core-components on the 

GPU from Python. 

 It also provides automatic hyperparameter tuning. 

 We can implement Reinforcement learning, Generative Adversarial Networks 

(GANs), Supervised as well as Unsupervised learning. 

 For massive datasets, CNTK has built-in optimised readers. 

Usage of resources efficiently 

 CNTK provides us parallelism with high accuracy on multiple GPUs/machines via 

1-bit SGD. 

 To fit the largest models in GPU memory, it provides memory sharing and other 

built-in methods. 

Express our own networks easily 

1. Microsoft Cognitive Toolkit (CNTK) — Introduction 
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 CNTK has full APIs for defining your own network, learners, readers, training and 

evaluation from Python, C++, and BrainScript. 

 Using CNTK, we can easily evaluate models with Python, C++, C# or BrainScript. 

 It provides both high-level as well as low-level APIs. 

 Based on our data, it can automatically shape the inference. 

 It has fully optimised symbolic Recurrent Neural Network (RNN) loops. 

Measuring model performance 

 CNTK provides various components to measure the performance of neural 

networks you build. 

 Generates log data from your model and the associated optimiser, which we can 

use to monitor the training process. 

Version 1.0 vs Version 2.0 

Following table compares CNTK Version 1.0 and 2.0: 

Version 1.0 Version 2.0 

It was released in 2016. It is a significant rewrite of the 1.0 Version 

and was released in June 2017. 

It used a proprietary scripting language 

called BrainScript. 

Its framework functions can be called using 

C++, Python. We can easily load our 

modules in C# or Java. BrainScript is also 

supported by Version 2.0. 

It runs on both Windows and Linux 

systems but not directly on Mac OS. 

It also runs on both Windows (Win 8.1, 

Win 10, Server 2012 R2 and later) and 

Linux systems but not directly on Mac OS. 

Important Highlights of Version 2.7 

Version 2.7 is the last main released version of Microsoft Cognitive Toolkit. It has full 

support for ONNX 1.4.1. Following are some important highlights of this last released 

version of CNTK. 

 Full support for ONNX 1.4.1. 

 Support for CUDA 10 for both Windows and Linux systems. 

 It supports advance Recurrent Neural Networks (RNN) loop in ONNX export. 

 It can export more than 2GB models in ONNX format. 

 It supports FP16 in BrainScript scripting language’s training action. 
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Here, we will understand about the installation of CNTK on Windows and on Linux. 

Moreover, the chapter explains installing CNTK package, steps to install Anaconda, CNTK 

files, directory structure and CNTK library organisation.   

Prerequisites 

In order to install CNTK, we must have Python installed on our computers. You can go to 

the link https://www.python.org/downloads/ and select the latest version for your OS, 

i.e. Windows and Linux/Unix. For basic tutorial on Python, you can refer to the link 

https://www.tutorialspoint.com/python3/index.htm.  

 

CNTK is supported for Windows as well as Linux so we will walk through both of them. 

Installing on Windows 

In order to run CNTK on Windows, we will be using the Anaconda version of Python. 

We know that, Anaconda is a redistribution of Python. It includes additional packages 

like Scipy and Scikit-learn which are used by CNTK to perform various useful 

calculations. 

So, first let see the steps to install Anaconda on your machine: 

Step 1: First download the setup files from the public website 
https://www.anaconda.com/distribution/. 

2. Microsoft Cognitive Toolkit (CNTK) — Getting Started  

https://www.python.org/downloads/
https://www.tutorialspoint.com/python3/index.htm
https://www.anaconda.com/distribution/
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Step 2: Once you downloaded the setup files, start the installation and follow the 

instructions from the link https://docs.anaconda.com/anaconda/install/. 

Step 3: Once installed, Anaconda will also install some other utilities, which will 

automatically include all the Anaconda executables in your computer PATH variable. We 

can manage our Python environment from this prompt, can install packages and run 

Python scripts. 

Installing CNTK package 

Once Anaconda installation is done, you can use the most common way to install the 

CNTK package through the pip executable by using following command: 

pip install cntk 

There are various other methods to install Cognitive Toolkit on your machine. Microsoft 

has a neat set of documentation that explains the other installation methods in detail. 

Please follow the link  https://docs.microsoft.com/en-us/cognitive-toolkit/Setup-CNTK-

on-your-machine.  

Installing on Linux 

Installation of CNTK on Linux is a bit different from its installation on Windows. Here, for 

Linux we are going to use Anaconda to install CNTK, but instead of a graphical installer 

for Anaconda, we will be using a terminal-based installer on Linux. Although, the installer 

will work with almost all Linux distributions, we limited the description to Ubuntu.   

So, first let see the steps to install Anaconda on your machine: 

Steps to install Anaconda 

Step 1: Before installing Anaconda, make sure that the system is fully up to date. To 

check, first execute the following two commands inside a terminal: 

sudo apt update 

sudo apt upgrade 

Step 2: Once the computer is updated, get the URL from the public website 

https://www.anaconda.com/distribution/ for the latest Anaconda installation files. 

Step 3: Once URL is copied, open a terminal window and execute the following 

command:  

https://docs.anaconda.com/anaconda/install/
https://docs.microsoft.com/en-us/cognitive-toolkit/Setup-CNTK-on-your-machine
https://docs.microsoft.com/en-us/cognitive-toolkit/Setup-CNTK-on-your-machine
https://www.anaconda.com/distribution/
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wget -0 anaconda-installer.sh url SHAPE  \* MERGEFORMAT 

| } 

Replace the url placeholder with the URL copied from the Anaconda website. 

Step 4: Next, with the help of following command, we can install Anaconda: 

sh ./anaconda-installer.sh 

The above command will by default install Anaconda3 inside our home directory. 

Installing CNTK package 

Once Anaconda installation is done, you can use the most common way to install the 

CNTK package through the pip executable by using following command: 

pip install cntk 

Examining CNTK files & directory structure 

Once CNTK is installed as a Python package, we can examine its file and directory 

structure. It’s at C:\Users\<user>\Anaconda3\Lib\site-packages\cntk, as shown 

below in screenshot.   

h 
f 

x 

y 
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Verifying CNTK installation 

Once CNTK is installed as a Python package, you should verify that CNTK has been 

installed correctly. From Anaconda command shell, start Python interpreter by entering 

ipython. Then, import CNTK by entering the following command.  

import cntk as c 

Once imported, check its version with the help of following command: 

print(c.__version__) 

The interpreter will respond with installed CNTK version. If it doesn’t respond, there will 

be a problem with the installation. 

The CNTK library organisation 

CNTK, a python package technically, is organised into 13 high-level sub-packages and 8 

smaller sub-packages. Following table consist of the 10 most frequently used packages: 

Package Name Description 

cntk.io Contains functions for reading data. For 

example: next_minibatch() 

cntk.layers Contains high-level functions for creating 

neural networks. For example: Dense() 

cntk.learners Contains functions for training. For 

example: sgd() 

cntk.losses Contains functions to measure training 

error. For example: squared_error() 
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cntk.metrics Contains functions to measure model 

error. For example: classificatoin_error 

cntk.ops Contains low-level functions for creating 

neural networks. For example: tanh() 

cntk.random Contains functions to generate random 

numbers. For example: normal() 

cntk.train Contains training functions. For example: 

train_minibatch() 

cntk.initializer Contains model parameter initializers.  For 

example: normal() and uniform() 

cntk.variables Contains low-level constructs. For 

example: Parameter() and Variable() 
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Microsoft Cognitive Toolkit offers two different build versions namely CPU-only and GPU-

only. 

CPU-only build version  

The CPU-only build version of CNTK uses the optimised Intel MKLML, where MKLML is the 

subset of MKL (Math Kernel Library) and released with Intel MKL-DNN as a terminated 

version of Intel MKL for MKL-DNN.  

GPU-only build version  

On the other hand, the GPU-only build version of CNTK uses highly optimised NVIDIA 

libraries such as CUB and cuDNN. It supports distributed training across multiple GPUs 

and multiple machines. For even faster distributed training in CNTK, the GPU-build 

version also includes: 

 MSR-developed 1bit-quantized SGD. 

 Block-momentum SGD parallel training algorithms. 

Enabling GPU with CNTK on Windows  

In the previous section, we saw how to install the basic version of CNTK to use with the 

CPU. Now let’s discuss how we can install CNTK to use with a GPU. But, before getting 

deep dive into it, first you should have a supported graphics card.  

At present, CNTK supports the NVIDIA graphics card with at least CUDA 3.0 support. To 

make sure, you can check at https://developer.nvidia.com/cuda-gpus whether your GPU 

supports CUDA. 

So, let us see the steps to enable GPU with CNTK on Windows OS: 

Step 1: Depending on the graphics card you are using, first you need to have the latest 

GeForce or Quadro drivers for your graphics card.  

Step 2: Once you downloaded the drivers, you need to install the CUDA toolkit Version 

9.0 for Windows from NVIDIA website https://developer.nvidia.com/cuda-90-download-

archive?target_os=Windows&target_arch=x86_64. After installing, run the installer and 

follow the instructions. 

Step 3: Next, you need to install cuDNN binaries from NVIDIA website 

https://developer.nvidia.com/rdp/form/cudnn-download-survey. With CUDA 9.0 version, 

cuDNN 7.4.1 works well. Basically, cuDNN is a layer on the top of CUDA, used by CNTK.  

Step 4: After downloading the cuDNN binaries, you need to extract the zip file into the 

root folder of your CUDA toolkit installation.  

3. Microsoft Cognitive Toolkit (CNTK) — CPU and GPU 

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-90-download-archive?target_os=Windows&target_arch=x86_64
https://developer.nvidia.com/cuda-90-download-archive?target_os=Windows&target_arch=x86_64
https://developer.nvidia.com/rdp/form/cudnn-download-survey
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Step 5: This is the last step which will enable GPU usage inside CNTK. Execute the 

following command inside the Anaconda prompt on Windows OS: 

pip install cntk-gpu 

Enabling GPU with CNTK on Linux  

Let us see how we can enable GPU with CNTK on Linux OS: 

Downloading the CUDA toolkit  

First, you need to install the CUDA toolkit from NVIDIA website 
https://developer.nvidia.com/cuda-90-download-

archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1

604&target_type=runfilelocal. 

Running the installer  

Now, once you have binaries on the disk, run the installer by opening a terminal and 

executing the following command and the instruction on screen: 

sh cuda_9.0.176_384.81_linux-run 

Modify Bash profile script  

After installing CUDA toolkit on your Linux machine, you need to modify the BASH profile 

script. For this, first open the $HOME/ .bashrc file in text editor. Now, at the end of the 

script, include the following lines: 

export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}} 

export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64\ 

${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} 

Installing cuDNN libraries  

At last we need to install cuDNN binaries. It can be downloaded from NVIDIA website 
https://developer.nvidia.com/rdp/form/cudnn-download-survey. With CUDA 9.0 version, 

cuDNN 7.4.1 works well. Basically, cuDNN is a layer on the top of CUDA, used by CNTK.  

Once downloaded the version for Linux, extract it to the /usr/local/cuda-9.0 folder by 

using the following command: 

tar xvzf -C /usr/local/cuda-9.0/ cudnn-9.0-linux-x64-v7.4.1.5.tgz 

Change the path to the filename as required. 

https://developer.nvidia.com/cuda-90-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1604&target_type=runfilelocal
https://developer.nvidia.com/cuda-90-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1604&target_type=runfilelocal
https://developer.nvidia.com/cuda-90-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1604&target_type=runfilelocal
https://developer.nvidia.com/rdp/form/cudnn-download-survey
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In this chapter, we will learn in detail about the sequences in CNTK and its classification. 

Tensors  

The concept on which CNTK works is tensor. Basically, CNTK inputs, outputs as well as 

parameters are organized as tensors, which is often thought of as a generalised matrix. 

Every tensor has a rank- 

 Tensor of rank 0 is a scalar. 

 Tensor of rank 1 is a vector. 

 Tensor of rank 2 is amatrix. 

Here, these different dimensions are referred as axes. 

Static axes and Dynamic axes  

As the name implies, the static axes have the same length throughout the network’s life. 

On the other hand, the length of dynamic axes can vary from instance to instance. In 

fact, their length is typically not known before each minibatch is presented.  

Dynamic axes are like static axes because they also define a meaningful grouping of the 

numbers contained in the tensor.  

Example  

To make it clearer, let’s see how a minibatch of short video clips is represented in CNTK. 

Suppose that the resolution of video clips is all 640 * 480. And, also the clips are shot in 

color which is typically encoded with three channels. It further means that our minibatch 

has the following: 

 3 static axes of length 640, 480 and 3 respectively. 

 Two dynamic axes; the length of the video and the minibatch axes. 

It means that if a minibatch is having 16 videos each of which is 240 frames long, would 

be represented as 16*240*3*640*480 tensors. 

Working with sequences in CNTK  

Let us understand sequences in CNTK by first learning about Long-Short Term Memory 

Network. 

Long-Short Term Memory Network (LSTM) 

4. CNTK — Sequence Classification 
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Long-short term memory (LSTMs) networks were introduced by Hochreiter & 

Schmidhuber. It solved the problem of getting a basic recurrent layer to remember 

things for a long time. The architecture of LSTM is given above in the diagram. As we 

can see it has input neurons, memory cells, and output neurons. In order to combat the 

vanishing gradient problem, Long-short term memory networks use an explicit memory 

cell (stores the previous values) and the following gates: 

 Forget gate: As the name implies, it tells the memory cell to forget the previous 

values. The memory cell stores the values until the gate i.e. ‘forget gate’ tells it 

to forget them.  

 Input gate: As name implies, it adds new stuff to the cell. 

 Output gate: As name implies, output gate decides when to pass along the 

vectors from the cell to the next hidden state.  

It is very easy to work with sequences in CNTK. Let’s see it with the help of following 

example: 

import sys 

import os 

from cntk import Trainer, Axis 

from cntk.io import MinibatchSource, CTFDeserializer, StreamDef, StreamDefs,\ 

        INFINITELY_REPEAT 

from cntk.learners import sgd, learning_parameter_schedule_per_sample 

from cntk import input_variable, cross_entropy_with_softmax, \ 

        classification_error, sequence 

from cntk.logging import ProgressPrinter 

from cntk.layers import Sequential, Embedding, Recurrence, LSTM, Dense 

def create_reader(path, is_training, input_dim, label_dim): 

    return MinibatchSource(CTFDeserializer(path, StreamDefs( 

        features=StreamDef(field='x', shape=input_dim, is_sparse=True), 

        labels=StreamDef(field='y', shape=label_dim, is_sparse=False) 
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        )), randomize=is_training, 

        max_sweeps=INFINITELY_REPEAT if is_training else 1) 

 

def LSTM_sequence_classifier_net(input, num_output_classes, embedding_dim, 

                                LSTM_dim, cell_dim): 

    lstm_classifier = Sequential([Embedding(embedding_dim), 

                                  Recurrence(LSTM(LSTM_dim, cell_dim)), 

                                  sequence.last, 

                                  Dense(num_output_classes)]) 

    return lstm_classifier(input) 

 

def train_sequence_classifier(): 

    input_dim = 2000 

    cell_dim = 25 

    hidden_dim = 25 

    embedding_dim = 50 

    num_output_classes = 5 

 

    features = sequence.input_variable(shape=input_dim, is_sparse=True) 

    label = input_variable(num_output_classes) 

    classifier_output = LSTM_sequence_classifier_net( 

        features, num_output_classes, embedding_dim, hidden_dim, cell_dim) 

    ce = cross_entropy_with_softmax(classifier_output, label) 

    pe = classification_error(classifier_output, label) 

    rel_path = ("../../../Tests/EndToEndTests/Text/" + 

                "SequenceClassification/Data/Train.ctf") 

    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) 

    reader = create_reader(path, True, input_dim, num_output_classes) 

    input_map = { 

            features: reader.streams.features, 

            label:    reader.streams.labels 

    } 

    lr_per_sample = learning_parameter_schedule_per_sample(0.0005) 

    progress_printer = ProgressPrinter(0) 

 

    trainer = Trainer(classifier_output, (ce, pe), 

                      sgd(classifier_output.parameters, lr=lr_per_sample), 
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                      progress_printer) 

 

    minibatch_size = 200 

    for i in range(255): 

        mb = reader.next_minibatch(minibatch_size, input_map=input_map) 

        trainer.train_minibatch(mb) 

    evaluation_average = float(trainer.previous_minibatch_evaluation_average) 

    loss_average = float(trainer.previous_minibatch_loss_average) 

    return evaluation_average, loss_average 

if __name__ == '__main__': 

    error, _ = train_sequence_classifier() 

    print(" error: %f" % error) 

 

average      since    average      since      examples 

   loss       last     metric       last 

------------------------------------------------------ 

    1.61       1.61      0.886      0.886            44 

    1.61        1.6      0.714      0.629           133 

     1.6       1.59       0.56      0.448           316 

    1.57       1.55      0.479       0.41           682 

    1.53        1.5      0.464      0.449          1379 

    1.46        1.4      0.453      0.441          2813 

    1.37       1.28       0.45      0.447          5679 

     1.3       1.23      0.448      0.447         11365 

error: 0.333333 

The detailed explanation of the above program will be covered in next sections, 

especially when we will be constructing Recurrent Neural networks. 
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This chapter deals with constructing a logistic regression model in CNTK. 

Basics of Logistic Regression model  

Logistic Regression, one of the simplest ML techniques, is a technique especially for 

binary classification. In other words, to create a prediction model in situations where the 

value of the variable to predict can be one of just two categorical values. One of the 

simplest examples of Logistic Regression is to predict whether the person is male or 

female, based on person’s age, voice, hairs and so on. 

Example 

Let’s understand the concept of Logistic Regression mathematically with the help of 

another example: 

Suppose, we want to predict the credit worthiness of a loan application; 0 means reject, 

and 1 means approve, based on applicant debt, income and credit rating. We 

represent debt with X1, income with X2 and credit rating with X3. 

In Logistic Regression, we determine a weight value, represented by w, for every 

feature and a single bias value, represented by b. 

Now suppose,  

X1 = 3.0 

X2 = -2.0 

X3 = 1.0 

And suppose we determine weight and bias as follows: 

W1 = 0.65, W2 = 1.75, W3 = 2.05 and b = 0.33 

Now, for predicting the class, we need to apply the following formula: 

 

i.e. Z = (3.0)*(0.65) + (-2.0)*(1.75) + (1.0)*(2.05) + 0.33 

= 0.83 

Next, we need to compute P = 1.0/(1.0 + exp(-Z)). Here, the exp() function is Euler’s 

number. 

P = 1.0/(1.0 + exp(-0.83) 

   = 0.6963 

The P value can be interpreted as the probability that the class is 1. If P < 0.5, the 

prediction is class = 0 else the prediction (P >= 0.5) is class = 1.  

5. CNTK ― Logistic Regression Model 
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To determine the values of weight and bias, we must obtain a set of training data having 

the known input predictor values and known correct class labels values. After that, we 

can use an algorithm, generally Gradient Descent, in order to find the values of weight 

and bias.   

LR model implementation example 

For this LR model, we are going to use the following data set: 

1.0, 2.0, 0  

3.0, 4.0, 0  

5.0, 2.0, 0  

6.0, 3.0, 0  

8.0, 1.0, 0  

9.0, 2.0, 0  

1.0, 4.0, 1 

2.0, 5.0, 1 

4.0, 6.0, 1  

6.0, 5.0, 1  

7.0, 3.0, 1  

8.0, 5.0, 1 

To start this LR model implementation in CNTK, we need to first import the following 

packages: 

import numpy as np 

import cntk as C 

The program is structured with main() function as follows: 

def main():  

print("Using CNTK version = " + str(C.__version__) + "\n")  

Now, we need to load the training data into memory as follows: 

data_file = ".\\dataLRmodel.txt"  

print("Loading data from " + data_file + "\n")  

features_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",", 

skiprows=0, usecols=[0,1]) 

labels_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",", skiprows=0, 

usecols=[2], ndmin=2) 

Now, we will be creating a training program that creates a logistic regression model 

which is compatible with the training data: 
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features_dim = 2  

 

labels_dim = 1  

X = C.ops.input_variable(features_dim, np.float32)  

y = C.input_variable(labels_dim, np.float32)  

W = C.parameter(shape=(features_dim, 1)) # trainable cntk.Parameter  

b = C.parameter(shape=(labels_dim))  

z = C.times(X, W) + b  

p = 1.0 / (1.0 + C.exp(-z))  

model = p  

Now, we need to create Lerner and trainer as follows: 

ce_error = C.binary_cross_entropy(model, y) # CE a bit more principled for LR  

fixed_lr = 0.010  

learner = C.sgd(model.parameters, fixed_lr)  

trainer = C.Trainer(model, (ce_error), [learner])  

max_iterations = 4000  

LR Model training 

Once, we have created the LR model, next, it is time to start the training process: 

np.random.seed(4)  

N = len(features_mat)  

for i in range(0, max_iterations):  

row = np.random.choice(N,1) # pick a random row from training items  

trainer.train_minibatch({ X: features_mat[row], y: labels_mat[row] })  

if i % 1000 == 0 and i > 0:  

mcee = trainer.previous_minibatch_loss_average  

print(str(i) + " Cross-entropy error on curr item = %0.4f " % mcee)  

Now, with the help of the following code, we can print the model weights and bias: 

np.set_printoptions(precision=4, suppress=True)  

print("Model weights: ")  

print(W.value)  

print("Model bias:")  

print(b.value)  
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print("")  

if __name__ == "__main__":  

  main()  

Training a Logistic Regression model ― Complete example 

import numpy as np 

import cntk as C 

def main():  

    print("Using CNTK version = " + str(C.__version__) + "\n")  

data_file = ".\\dataLRmodel.txt" # provide the name and the location of data 

file 

print("Loading data from " + data_file + "\n")  

features_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",", 

skiprows=0, usecols=[0,1]) 

labels_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",", skiprows=0, 

usecols=[2], ndmin=2) 

features_dim = 2  

labels_dim = 1  

X = C.ops.input_variable(features_dim, np.float32)  

y = C.input_variable(labels_dim, np.float32)  

W = C.parameter(shape=(features_dim, 1)) # trainable cntk.Parameter  

b = C.parameter(shape=(labels_dim))  

z = C.times(X, W) + b  

p = 1.0 / (1.0 + C.exp(-z))  

model = p  

ce_error = C.binary_cross_entropy(model, y) # CE a bit more principled for LR  

fixed_lr = 0.010  

learner = C.sgd(model.parameters, fixed_lr)  

trainer = C.Trainer(model, (ce_error), [learner])  

max_iterations = 4000  

np.random.seed(4)  

N = len(features_mat)  

for i in range(0, max_iterations):  

row = np.random.choice(N,1) # pick a random row from training items  

 

trainer.train_minibatch({ X: features_mat[row], y: labels_mat[row] })  
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if i % 1000 == 0 and i > 0:  

mcee = trainer.previous_minibatch_loss_average  

print(str(i) + " Cross-entropy error on curr item = %0.4f " % mcee)  

 

np.set_printoptions(precision=4, suppress=True)  

print("Model weights: ")  

print(W.value)  

print("Model bias:")  

print(b.value)  

if __name__ == "__main__":  

  main()  

Output 

Using CNTK version = 2.7 

1000 cross entropy error on curr item = 0.1941 

2000 cross entropy error on curr item = 0.1746 

3000 cross entropy error on curr item = 0.0563 

Model weights: 

[-0.2049] 

   [0.9666]] 

Model bias: 

[-2.2846] 

Prediction using trained LR Model 

Once the LR model has been trained, we can use it for prediction as follows: 

First of all, our evaluation program imports the numpy package and loads the training 

data into a feature matrix and a class label matrix in the same way as the training 

program we implement above: 

import numpy as np  

def main():  

data_file = ".\\dataLRmodel.txt" # provide the name and the location of data 

file 

features_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",",  

skiprows=0, usecols=(0,1))  

 

 

labels_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",",  
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skiprows=0, usecols=[2], ndmin=2)  

Next, it is time to set the values of the weights and the bias that were determined by our 

training program: 

print("Setting weights and bias values \n")  

 

weights = np.array([0.0925, 1.1722], dtype=np.float32)  

 

bias = np.array([-4.5400], dtype=np.float32)  

N = len(features_mat)  

features_dim = 2 

Next our evaluation program will compute the logistic regression probability by walking 

through each training items as follows: 

print("item pred_prob pred_label act_label result")  

for i in range(0, N): # each item  

   x = features_mat[i]  

   z = 0.0  

   for j in range(0, features_dim):  

       z += x[j] * weights[j]  

    z += bias[0]  

    pred_prob = 1.0 / (1.0 + np.exp(-z)) 

    pred_label = 0 if pred_prob < 0.5 else 1  

    act_label = labels_mat[i]  

    pred_str = ‘correct’ if np.absolute(pred_label - act_label) < 1.0e-5 \  

          else ‘WRONG’  

   print("%2d %0.4f %0.0f %0.0f %s" % \ (i, pred_prob, pred_label, act_label, 

pred_str)) 

Now let us demonstrate how to do prediction: 

x = np.array([9.5, 4.5], dtype=np.float32)  

print("\nPredicting class for age, education = ")  

print(x)  

z = 0.0  

for j in range(0, features_dim):  

 

 

    z += x[j] * weights[j]  
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z += bias[0]  

p = 1.0 / (1.0 + np.exp(-z))  

print("Predicted p = " + str(p))  

if p < 0.5: print("Predicted class = 0")  

else: print("Predicted class = 1") 

Complete prediction evaluation program 

import numpy as np  

def main():  

data_file = ".\\dataLRmodel.txt" # provide the name and the location of data 

file 

features_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",",  

skiprows=0, usecols=(0,1))  

labels_mat = np.loadtxt(data_file, dtype=np.float32, delimiter=",",  

skiprows=0, usecols=[2], ndmin=2)  

print("Setting weights and bias values \n")  

weights = np.array([0.0925, 1.1722], dtype=np.float32)  

bias = np.array([-4.5400], dtype=np.float32)  

N = len(features_mat)  

features_dim = 2 

print("item pred_prob pred_label act_label result")  

for i in range(0, N): # each item  

   x = features_mat[i]  

   z = 0.0  

   for j in range(0, features_dim):  

       z += x[j] * weights[j]  

    z += bias[0]  

    pred_prob = 1.0 / (1.0 + np.exp(-z)) 

    pred_label = 0 if pred_prob < 0.5 else 1  

    act_label = labels_mat[i]  

    pred_str = ‘correct’ if np.absolute(pred_label - act_label) < 1.0e-5 \  

          else ‘WRONG’  

   print("%2d %0.4f %0.0f %0.0f %s" % \ (i, pred_prob, pred_label, act_label, 

pred_str)) 

 

x = np.array([9.5, 4.5], dtype=np.float32)  

print("\nPredicting class for age, education = ")  
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print(x)  

z = 0.0  

for j in range(0, features_dim):  

    z += x[j] * weights[j]  

z += bias[0]  

p = 1.0 / (1.0 + np.exp(-z))  

 

print("Predicted p = " + str(p))  

if p < 0.5: print("Predicted class = 0")  

 

else: print("Predicted class = 1") 

if __name__ == "__main__":  

  main()  

Output 

Setting weights and bias values. 

Item pred_prob pred_label act_label result 

0    0.3640  0  0  correct 

1    0.7254  1  0  WRONG 

2    0.2019  0  0  correct 

3    0.3562  0  0  correct 

4    0.0493  0  0  correct 

5    0.1005  0  0  correct 

6    0.7892  1  1  correct 

7    0.8564  1  1  correct 

8    0.9654  1  1  correct 

9    0.7587  1  1  correct 

10   0.3040  0  1  WRONG 

11   0.7129  1  1  correct 

Predicting class for age, education =  

[9.5 4.5] 

Predicting p = 0.526487952 

Predicting class = 1 
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This chapter deals with concepts of Neural Network with regards to CNTK. 

As we know that, several layers of neurons are used for making a neural network. But, 

the question arises that in CNTK how we can model the layers of a NN? It can be done 

with the help of layer functions defined in the layer module.   

Layer function 

Actually, in CNTK, working with the layers has a distinct functional programming feel to 

it. Layer function looks like a regular function and it produces a mathematical function 

with a set of predefined parameters. Let’s see how we can create the most basic layer 

type, Dense, with the help of layer function.   

Example 

With the help of following basic steps, we can create the most basic layer type: 

Step 1: First, we need to import the Dense layer function from the layers’ package of 

CNTK. 

from cntk.layers import Dense 

Step 2: Next from the CNTK root package, we need to import the input_variable 

function. 

from cntk import input_variable 

Step 3: Now, we need to create a new input variable using the input_variable function. 

We also need to provide the its size.  

feature = input_variable(100) 

Step 4: At last, we will create a new layer using Dense function along with providing the 

number of neurons we want.  

layer = Dense(40)(feature) 

Now, we can invoke the configured Dense layer function to connect the Dense layer to 

the input.  

Complete implementation example 

from cntk.layers import Dense 

 

from cntk import input_variable 

 

6. CNTK — Neural Network (NN) Concepts  
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feature= input_variable(100) 

 

layer = Dense(40)(feature) 

Customizing layers 

As we have seen CNTK provides us with a pretty good set of defaults for building NNs. 

Based on activation function and other settings we choose, the behavior as well as 

performance of the NN is different. It is another very useful stemming algorithm. That’s 

the reason, it is good to understand what we can configure. 

Steps to configure a Dense layer    

Each layer in NN has its unique configuration options and when we talk about Dense 

layer, we have following important settings to define: 

 shape: As name implies, it defines the output shape of the layer which further 

determines the number of neurons in that layer. 

 activation: It defines the activation function of that layer, so it can transform the 

input data. 

 init: It defines the initialisation function of that layer. It will initialise the 

parameters of the layer when we start training the NN. 

Let’s see the steps with the help of which we can configure a Dense layer: 

Step1: First, we need to import the Dense layer function from the layers’ package of 

CNTK. 

from cntk.layers import Dense 

Step2: Next from the CNTK ops package, we need to import the sigmoid operator.  It 

will be used to configure as an activation function. 

from cntk.ops import sigmoid 

Step3: Now, from initializer package, we need to import the glorot_uniform initializer.  

from cntk.initializer import glorot_uniform 

Step4: At last, we will create a new layer using Dense function along with providing the 

number of neurons as the first argument. Also, provide the sigmoid operator as 

activation function and the glorot_uniform as the init function for the layer. 

layer = Dense(50, activation = sigmoid, init = glorot_uniform) 

Complete implementation example: 

from cntk.layers import Dense 
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from cntk.ops import sigmoid 

 

from cntk.initializer import glorot_uniform 

 

layer = Dense(50, activation = sigmoid, init = glorot_uniform) 

Optimizing the parameters 

Till now, we have seen how to create the structure of a NN and how to configure various 

settings. Here, we will see, how we can optimise the parameters of a NN. With the help 

of the combination of two components namely learners and trainers, we can optimise 

the parameters of a NN. 

trainer component 

The first component which is used to optimise the parameters of a NN is trainer 

component. It basically implements the backpropagation process. If we talk about its 

working, it passes the data through the NN to obtain a prediction.  

After that, it uses another component called learner in order to obtain the new values for 

the parameters in a NN. Once it obtains the new values, it applies these new values and 

repeat the process until an exit criterion is met.      

learner component 

The second component which is used to optimise the parameters of a NN is learner 

component, which is basically responsible for performing the gradient descent algorithm.   

Learners included in the CNTK library 

Following is the list of some of the interesting learners included in CNTK library: 

 Stochastic Gradient Descent (SGD): This learner represents the basic 

stochastic gradient descent, without any extras.  

 Momentum Stochastic Gradient Descent (MomentumSGD): With SGD, this 

learner applies the momentum to overcome the problem of local maxima. 

 RMSProp: This learner, in order to control the rate of descent, uses decaying 

learning rates. 

 Adam: This learner, in order to decrease the rate of descent over time, uses 

decaying momentum. 

 Adagrad: This learner, for frequently as well as infrequently occurring features, 

uses different learning rates.  
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This chapter will elaborate on creating a neural network in CNTK. 

Build the network structure 

In order to apply CNTK concepts to build our first NN, we are going to use NN to classify 

species of iris flowers based on the physical properties of sepal width and length, and 

petal width and length. The dataset which we will be using iris dataset that describes the 

physical properties of different varieties of iris flowers: 

 Sepal length 

 Sepal width 

 Petal length 

 Petal width 

 Class i.e. iris setosa or iris versicolor or iris virginica 

Here, we will be building a regular NN called a feedforward NN. Let us see the 

implementation steps to build the structure of NN: 

Step 1: First, we will import the necessary components such as our layer types, 

activation functions, and a function that allows us to define an input variable for our NN, 

from CNTK library.  

from cntk import default_options, input_variable 

 

from cntk.layers import Dense, Sequential 

 

from cntk.ops import log_softmax, relu 

Step 2: After that, we will create our model using sequential function. Once created, we 

will feed it with the layers we want. Here, we are going to create two distinct layers in 

our NN; one with four neurons and another with three neurons.  

model = Sequential([Dense(4, activation=relu), Dense(3, 

activation=log_sogtmax)]) 

Step 3: At last, in order to compile the NN, we will bind the network to the input 

variable. It has an input layer with four neurons and an output layer with three neurons. 

feature= input_variable(4) 

 

7. CNTK — Creating First Neural Network 
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z = model(feature) 

Applying an activation function  

There are lots of activation functions to choose from and choosing the right activation 

function will definitely make a big difference to how well our deep learning model will 

perform. 

At the output layer 

Choosing an activation function at the output layer will depend upon the kind of 

problem we are going to solve with our model.  

 For a regression problem, we should use a linear activation function on the 

output layer. 

 For a binary classification problem, we should use a sigmoid activation 

function on the output layer. 

 For multi-class classification problem, we should use a softmax activation 

function on the output layer. 

 Here, we are going to build a model for predicting one of the three classes. It 

means we need to use softmax activation function at output layer. 

At the hidden layer 

Choosing an activation function at the hidden layer requires some experimentation for 

monitoring the performance to see which activation function works well.   

 In a classification problem, we need to predict the probability a sample belongs to 

a specific class. That’s why we need an activation function that gives us 

probabilistic values. To reach this goal, sigmoid activation function can help 

us. 

 

 One of the major problems associated with sigmoid function is vanishing gradient 

problem. To overcome such problem, we can use ReLU activation function that 

coverts all negative values to zero and works as a pass-through filter for positive 

values.  

Picking a loss function  

Once, we have the structure for our NN model, we must have to optimise it. For 

optimising we need a loss function. Unlike activation functions, we have very less 

loss functions to choose from. However, choosing a loss function will depend upon the 

kind of problem we are going to solve with our model. 

For example, in a classification problem, we should use a loss function that can measure 

the difference between a predicted class and an actual class.  

loss function 
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For the classification problem, we are going to solve with our NN model, categorical 

cross entropy loss function is the best candidate. In CNTK, it is implemented as 

cross_entropy_with_softmax which can be imported from cntk.losses package, as 

follows: 

label= input_variable(3) 

 

loss = cross_entropy_with_softmax(z, label) 

Metrics  

With having the structure for our NN model and a loss function to apply, we have all the 

ingredients to start making the recipe for optimising our deep learning model. But, 

before getting deep dive into this, we should learn about metrics.  

cntk.metrics 

CNTK has the package named cntk.metrics from which we can import the metrics we 

are going to use. As we are building a classification model, we will be using 

classification_error matric that will produce a number between 0 and 1. The number 

between 0 and 1 indicates the percentage of samples correctly predicted: 

First, we need to import the metric from cntk.metrics package: 

from cntk.metrics import classification_error 

 

error_rate = classification_error(z, label) 

The above function actually needs the output of the NN and the expected label as input. 
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Here, we will understand about training the Neural Network in CNTK. 

Training a model in CNTK 

In the previous section, we have defined all the components for the deep learning model. 

Now it is time to train it. As we discussed earlier, we can train a NN model in CNTK using 

the combination of learner and trainer.  

Choosing a learner and setting up training 

In this section, we will be defining the learner. CNTK provides several learners to 

choose from. For our model, defined in previous sections, we will be using Stochastic 

Gradient Descent (SGD) learner. 

In order to train the neural network, let us configure the learner and trainer with the 

help of following steps: 

Step 1: First, we need to import sgd function from cntk.lerners package.  

from cntk.learners import sgd 

Step 2: Next, we need to import Trainer function from cntk.train.trainer package.  

from cntk.train.trainer import Trainer 

Step 3: Now, we need to create a learner. It can be created by invoking sgd function 

along with providing model’s parameters and a value for the learning rate. 

learner = sgd(z.parametrs, 0.01) 

Step 4: At last, we need to initialize the trainer. It must be provided the network, the 

combination of the loss and metric along with the learner. 

trainer = Trainer(z, (loss, error_rate), [learner]) 

The learning rate which controls the speed of optimisation should be small number 

between 0.1 to 0.001. 

Choosing a learner and setting up the training ― Complete example 

from cntk.learners import sgd 

from cntk.train.trainer import Trainer 

learner = sgd(z.parametrs, 0.01) 

trainer = Trainer(z, (loss, error_rate), [learner]) 

 

8. CNTK — Training the Neural Network 
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Feeding data into the trainer 

Once we chose and configured the trainer, it is time to load the dataset. We have saved 

the iris dataset as a .CSV file and we will be using data wrangling package named 

pandas to load the dataset.  

Steps to load the dataset from .CSV file 

Step 1: First, we need to import the pandas package. 

from import pandas as pd 

Step 2: Now, we need to invoke the function named read_csv function to load the .csv 

file from the disk. 

df_source = pd.read_csv(‘iris.csv’, names = [‘sepal_length’, ‘sepal_width’, 

‘petal_length’, ‘petal_width’, index_col=False)  

Once we load the dataset, we need to split it into a set of features and a label. 

Steps to split the dataset into features and label 

Step 1: First, we need to select all rows and first four columns from the dataset. It can 

be done by using iloc function. 

x = df_source.iloc[:, :4].values 

Step 2: Next we need to select the species column from iris dataset. We will be using 

the values property to access the underlying numpy array.  

x = df_source[‘species’].values 

Steps to encode the species column to a numeric vector representation 

As we discussed earlier, our model is based on classification, it requires numeric input 

values. Hence, here we need to encode the species column to a numeric vector 

representation. Let’s see the steps to do it: 

Step 1: First, we need to create a list expression to iterate over all elements in the 

array. Then perform a look up in the label_mapping dictionary for each value. 

label_mapping = {‘Iris-Setosa’ : 0, ‘Iris-Versicolor’ : 1, ‘Iris-Virginica’ : 

2} 

Step 2: Next, convert this converted numeric value to a one-hot encoded vector. We will 

be using one_hot function as follows: 

def one_hot(index, length): 

 

result = np.zeros(length) 
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result[index] = 1 

return result 

Step 3: At last, we need to turn this converted list into a numpy array. 

y = np.array([one_hot(label_mapping[v], 3) for v in y]) 

Steps to detect overfitting 

The situation, when your model remembers samples but can’t deduce rules from the 

training samples, is overfitting. With the help of following steps, we can detect 

overfitting on our model: 

Step 1: First, from sklearn package, import the train_test_split function from the 

model_selection module. 

from sklearn.model_selection import train_test_split 

Step 2: Next, we need to invoke the train_test_split function with features x and 

labels y as follows: 

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0-2, 

stratify=y) 

We specified a test_size of 0.2 to set aside 20% of total data. 

label_mapping = {‘Iris-Setosa’ : 0, ‘Iris-Versicolor’ : 1, ‘Iris-Virginica’ : 

2} 

Steps to feed training set and validation set to our model 

Step 1: In order to train our model, first, we will be invoking the train_minibatch 

method. Then give it a dictionary that maps the input data to the input variable that we 

have used to define the NN and its associated loss function. 

trainer.train_minibatch({ features: X_train, label: y_train}) 

Step 2: Next, call train_minibatch by using the following for loop: 

for _epoch in range(10): 

trainer.train_minbatch ({ feature: X_train, label: y_train}) 

print(‘Loss: {}, Acc: {}’.format( 

 trainer.previous_minibatch_loss_average,  

trainer.previous_minibatch_evaluation_average)) 
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Feeding data into the trainer ― Complete example 

from import pandas as pd 

df_source = pd.read_csv(‘iris.csv’, names = [‘sepal_length’, ‘sepal_width’, 

‘petal_length’, ‘petal_width’, index_col=False)  

 

x = df_source.iloc[:, :4].values 

 

x = df_source[‘species’].values 

 

label_mapping = {‘Iris-Setosa’ : 0, ‘Iris-Versicolor’ : 1, ‘Iris-Virginica’ : 

2} 

 

def one_hot(index, length): 

result = np.zeros(length) 

result[index] = 1 

return result 

 

y = np.array([one_hot(label_mapping[v], 3) for v in y]) 

from sklearn.model_selection import train_test_split 

 

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0-2, 

stratify=y) 

  

label_mapping = {‘Iris-Setosa’ : 0, ‘Iris-Versicolor’ : 1, ‘Iris-Virginica’ : 

2} 

 

trainer.train_minibatch({ features: X_train, label: y_train}) 

 

for _epoch in range(10): 

trainer.train_minbatch ({ feature: X_train, label: y_train}) 

print(‘Loss: {}, Acc: {}’.format( 

 trainer.previous_minibatch_loss_average,  

trainer.previous_minibatch_evaluation_average)) 
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Measuring the performance of NN 

In order to optimise our NN model, whenever we pass data through the trainer, it 

measures the performance of the model through the metric that we configured for 

trainer. Such measurement of performance of NN model during training is on training 

data. But on the other hand, for a full analysis of the model performance we need to use 

test data as well.  

So, to measure the performance of the model using the test data, we can invoke the 

test_minibatch method on the trainer as follows: 

trainer.test_minibatch({ features: X_test, label: y_test}) 

Making prediction with NN 

Once you trained a deep learning model, the most important thing is to make predictions 

using that. In order to make prediction from the above trained NN, we can follow the 

given steps: 

Step 1: First, we need to pick a random item from the test set using the following 

function: 

np.random.choice 

Step 2: Next, we need to select the sample data from the test set by using 

sample_index. 

Step 3: Now, in order to convert the numeric output to the NN to an actual label, create 

an inverted mapping. 

Step 4: Now, use the selected sample data. Make a prediction by invoking the NN z as 

a function.  

Step 5: Now, once you got the predicted output, take the index of the neuron that has 

the highest value as the predicted value. It can be done by using the np.argmax  

function from the numpy package.  

Step 6: At last, convert the index value into the real label by using inverted_mapping. 

Making prediction with NN ― Complete example 

sample_index = np.random.choice(X_test.shape[0]) 

sample = X_test[sample_index]  

 

inverted_mapping = { 

 1:’Iris-setosa’, 

 2:’Iris-versicolor’, 

 3:’Iris-virginica’ 

} 
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prediction = z(sample) 

 

predicted_label = inverted_mapping[np.argmax(prediction)] 

print(predicted_label) 

Output 

After training the above deep learning model and running it, you will get the following 

output: 

Iris-versicolor 
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In this chapter, we will learn about how to work with the in-memory and large datasets 

in CNTK. 

Training with small in-memory datasets 

When we talk about feeding data into CNTK trainer, there can be many ways, but it will 

depend upon the size of the dataset and format of the data. The data sets can be small 

in-memory or large datasets.  

In this section, we are going to work with in-memory datasets. For this, we will use the 

following two frameworks: 

 Numpy 

 Pandas 

Using Numpy arrays 

Here, we will work with a numpy based randomly generated dataset in CNTK. In this 

example, we are going to simulate data for a binary classification problem. Suppose, we 

have a set of observations with 4 features and want to predict two possible labels with 

our deep learning model.  

Implementation Example 

For this, first we must generate a set of labels containing a one-hot vector 

representation of the labels, we want to predict. It can be done with the help of following 

steps: 

Step 1: Import the numpy package as follows: 

import numpy as np 

num_samples = 20000 

Step 2: Next, generate a label mapping by using np.eye function as follows: 

label_mapping = np.eye(2) 

Step 3: Now by using np.random.choice function, collect the 20000 random samples 

as follows: 

y = label_mapping[np.random.choice(2,num_samples)].astype(np.float32) 

Step 4: Now at last by using np.random.random function, generate an array of 

random floating point values as follows: 

 

9. CNTK — In-Memory and Large Datasets 
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x = np.random.random(size=(num_samples, 4)).astype(np.float32) 

Once, we generate an array of random floating-point values, we need to convert them to 

32-bit floating point numbers so that it can be matched to the format expected by CNTK.  

Let’s follow the steps below to do this: 

Step 5:  Import the Dense and Sequential layer functions from cntk.layers module as 

follows: 

from cntk.layers import Dense, Sequential 

Step 6:  Now, we need to import the activation function for the layers in the network. 

Let us import the sigmoid as activation function: 

from cntk import input_variable, default_options 

from cntk.ops import sigmoid 

Step 7:  Now, we need to import the loss function to train the network. Let us import 

binary_cross_entropy as loss function: 

from cntk.losses import binary_cross_entropy 

Step 8:  Next, we need to define the default options for the network. Here, we will be 

providing the sigmoid activation function as a default setting. Also, create the model by 

using Sequential layer function as follows: 

with default_options(activation=sigmoid): 

     model = Sequential([Dense(6),Dense(2)]) 

Step 9: Next, initialise an input_variable with 4 input features serving as the input for 

the network. 

features = input_variable(4) 

Step 10:  Now, in order to complete it, we need to connect features variable to the NN. 

z = model(features) 

So, now we have a NN, with the help of following steps, let us train it using in-memory 

dataset: 

Step 11: To train this NN, first we need to import learner from cntk.learners module. 

We will import sgd learner as follows: 

from cntk.learners import sgd 

Step 12: Along with that import the ProgressPrinter from cntk.logging module as 

well. 

from cntk.logging import ProgressPrinter 

progress_writer = ProgressPrinter(0) 
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Step 13: Next, define a new input variable for the labels as follows: 

labels = input_variable(2) 

Step 14: In order to train the NN model, next, we need to define a loss using the 

binary_cross_entropy function. Also, provide the model z and the labels variable. 

loss = binary_cross_entropy(z, labels) 

Step 15: Next, initialize the sgd learner as follows: 

learner = sgd(z.parameters, lr=0.1) 

Step 16: At last, call the train method on the loss function. Also, provide it with the 

input data, the sgd learner and the progress_printer. 

training_summary=loss.train((x,y),parameter_learners=[learner],callbacks=[progr

ess_writer]) 

Complete implementation example 

import numpy as np 

num_samples = 20000 

label_mapping = np.eye(2) 

y = label_mapping[np.random.choice(2,num_samples)].astype(np.float32) 

x = np.random.random(size=(num_samples, 4)).astype(np.float32) 

from cntk.layers import Dense, Sequential 

from cntk import input_variable, default_options 

from cntk.ops import sigmoid 

from cntk.losses import binary_cross_entropy 

with default_options(activation=sigmoid): 

     model = Sequential([Dense(6),Dense(2)]) 

features = input_variable(4) 

z = model(features) 

from cntk.learners import sgd 

from cntk.logging import ProgressPrinter 

progress_writer = ProgressPrinter(0) 

labels = input_variable(2) 

loss = binary_cross_entropy(z, labels) 

 

learner = sgd(z.parameters, lr=0.1) 

training_summary=loss.train((x,y),parameter_learners=[learner],callbacks=[progr

ess_writer]) 



Microsoft Cognitive Toolkit (CNTK)       

   37 

 

Output 

Build info: 

 

                Built time: *** ** **** 21:40:10 

                Last modified date: *** *** ** 21:08:46 2019 

                Build type: Release 

                Build target: CPU-only 

                With ASGD: yes 

                Math lib: mkl 

                Build Branch: HEAD 

                Build SHA1:ae9c9c7c5f9e6072cc9c94c254f816dbdc1c5be6 (modified) 

                MPI distribution: Microsoft MPI 

                MPI version: 7.0.12437.6 

------------------------------------------------------------------- 

 average      since    average      since      examples 

    loss       last     metric       last 

 ------------------------------------------------------ 

Learning rate per minibatch: 0.1 

     1.52       1.52          0          0            32 

     1.51       1.51          0          0            96 

     1.48       1.46          0          0           224 

     1.45       1.42          0          0           480 

     1.42        1.4          0          0           992 

     1.41       1.39          0          0          2016 

      1.4       1.39          0          0          4064 

     1.39       1.39          0          0          8160 

     1.39       1.39          0          0         16352 

Using Pandas DataFrames 

Numpy arrays are very limited in what they can contain and one of the most basic ways 

of storing data. For example, a single n-dimensional array can contain data of a single 

data type. But on the other hand, for many real-world cases we need a library that can 

handle more than one data type in a single dataset.  

One of the Python libraries called Pandas makes it easier to work with such kind of 

datasets. It introduces the concept of a DataFrame (DF) and allows us to load datasets 

from disk stored in various formats as DFs. For example, we can read DFs stored as 

CSV, JSON, Excel, etc. 
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You can learn Python Pandas library in more detail at 

https://www.tutorialspoint.com/python_pandas/index.htm.  

Implementation Example 

In this example, we are going to use the example of classifying three possible species of 

the iris flowers based on four properties. We have created this deep learning model in 

the previous sections too. The model is as follows: 

from cntk.layers import Dense, Sequential 

from cntk import input_variable, default_options 

from cntk.ops import sigmoid, log_softmax 

from cntk.losses import binary_cross_entropy 

model = Sequential([ 

Dense(4, activation=sigmoid),  

Dense(3, activation=log_softmax) 

]) 

features = input_variable(4) 

z = model(features) 

The above model contains one hidden layer and an output layer with three neurons to 

match the number of classes we can predict. 

Next, we will use the train method and loss function to train the network. For this, first 

we must load and preprocess the iris dataset, so that it matches the expected layout and 

data format for the NN. It can be done with the help of following steps: 

Step 1: Import the numpy and Pandas package as follows: 

import numpy as np 

import pandas as pd 

Step 2: Next, use the read_csv function to load the dataset into memory: 

df_source = pd.read_csv(‘iris.csv’, names = [‘sepal_length’, ‘sepal_width’, 

‘petal_length’, ‘petal_width’, ‘species’], index_col=False)  

Step 3: Now, we need to create a dictionary that will be mapping the labels in the 

dataset with their corresponding numeric representation. 

label_mapping = {‘Iris-Setosa’ : 0, ‘Iris-Versicolor’ : 1, ‘Iris-Virginica’ : 

2} 

Step 4: Now, by using iloc indexer on the DataFrame, select the first four columns as 

follows: 

x = df_source.iloc[:, :4].values 

https://www.tutorialspoint.com/python_pandas/index.htm
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Step 5: Next, we need to select the species columns as the labels for the dataset. It can 

be done as follows: 

y = df_source[‘species’].values 

Step 6: Now, we need to map the labels in the dataset, which can be done by using 

label_mapping. Also, use one_hot encoding to convert them into one-hot encoding 

arrays. 

y = np.array([one_hot(label_mapping[v], 3) for v in y]) 

Step 7: Next, to use the features and the mapped labels with CNTK, we need to convert 

them both to floats: 

x= x.astype(np.float32) 

y= y.astype(np.float32) 

As we know that, the labels are stored in the dataset as strings and CNTK cannot work 

with these strings. That’s the reason, it needs one-hot encoded vectors representing the 

labels. For this, we can define a function say one_hot as follows: 

def one_hot(index, length): 

result = np.zeros(length) 

result[index] = index 

return result 

Now, we have the numpy array in the correct format, with the help of following steps we 

can use them to train our model:  

Step 8: First, we need to import the loss function to train the network. Let us import 

binary_cross_entropy_with_softmax as loss function: 

from cntk.losses import binary_cross_entropy_with_softmax 

Step 9: To train this NN, we also need to import learner from cntk.learners module. 

We will import sgd learner as follows: 

from cntk.learners import sgd 

Step 10: Along with that import the ProgressPrinter from cntk.logging module as 

well. 

from cntk.logging import ProgressPrinter 

progress_writer = ProgressPrinter(0) 

Step 11: Next, define a new input variable for the labels as follows: 

labels = input_variable(3) 
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Step 12: In order to train the NN model, next, we need to define a loss using the 

binary_cross_entropy_with_softmax function. Also provide the model z and the 

labels variable. 

loss = binary_cross_entropy_with_softmax (z, labels) 

Step 13: Next, initialise the sgd learner as follows: 

learner = sgd(z.parameters, 0.1) 

Step 14: At last, call the train method on the loss function. Also, provide it with the 

input data, the sgd learner and the progress_printer. 

training_summary=loss.train((x,y),parameter_learners=[learner],callbacks=[progr

ess_writer],minibatch_size=16,max_epochs=5) 

Complete implementation example 

from cntk.layers import Dense, Sequential 

from cntk import input_variable, default_options 

from cntk.ops import sigmoid, log_softmax 

from cntk.losses import binary_cross_entropy 

model = Sequential([ 

Dense(4, activation=sigmoid),  

Dense(3, activation=log_softmax) 

]) 

features = input_variable(4) 

z = model(features) 

 

import numpy as np 

import pandas as pd 

df_source = pd.read_csv(‘iris.csv’, names = [‘sepal_length’, ‘sepal_width’, 

‘petal_length’, ‘petal_width’, ‘species’], index_col=False)  

label_mapping = {‘Iris-Setosa’ : 0, ‘Iris-Versicolor’ : 1, ‘Iris-Virginica’ : 

2} 

 

x = df_source.iloc[:, :4].values 

y = df_source[‘species’].values 

y = np.array([one_hot(label_mapping[v], 3) for v in y]) 

 

x= x.astype(np.float32) 

y= y.astype(np.float32) 
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def one_hot(index, length): 

result = np.zeros(length) 

result[index] = index 

return result 

from cntk.losses import binary_cross_entropy_with_softmax 

from cntk.learners import sgd 

from cntk.logging import ProgressPrinter 

progress_writer = ProgressPrinter(0) 

labels = input_variable(3) 

loss = binary_cross_entropy_with_softmax (z, labels) 

learner = sgd(z.parameters, 0.1) 

training_summary=loss.train((x,y),parameter_learners=[learner],callbacks=[progr

ess_writer],minibatch_size=16,max_epochs=5) 

Output 

Build info: 

 

                Built time: *** ** **** 21:40:10 

                Last modified date: *** *** ** 21:08:46 2019 

                Build type: Release 

                Build target: CPU-only 

                With ASGD: yes 

                Math lib: mkl 

                Build Branch: HEAD 

                Build SHA1:ae9c9c7c5f9e6072cc9c94c254f816dbdc1c5be6 (modified) 

                MPI distribution: Microsoft MPI 

                MPI version: 7.0.12437.6 

------------------------------------------------------------------- 

 

 average      since    average      since      examples 

    loss       last     metric       last 

 ------------------------------------------------------ 

Learning rate per minibatch: 0.1 

     1.1        1.1           0          0            16 

 

     0.835      0.704         0          0            32 
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     1.993      1.11          0          0            48 

     1.14       1.14          0          0           112 

 [………]     

Training with large datasets 

In the previous section, we worked with small in-memory datasets using Numpy and 

pandas, but not all datasets are so small. Specially the datasets containing images, 

videos, sound samples are large. MinibatchSource is a component, that can load data 

in chunks, provided by CNTK to work with such large datasets. Some of the features of 

MinibatchSource components are as follows: 

 MinibatchSource can prevent NN from overfitting by automatically randomize 

samples read from the data source. 

 It has built-in transformation pipeline which can be used to augment the data. 

 It loads the data on a background thread separate from the training process. 

In the following sections, we are going to explore how to use a minibatch source with 

out-of-memory data to work with large datasets. We will also explore, how we can use it 

to feed for training a NN. 

Creating MinibatchSource instance 

In the previous section, we have used iris flower example and worked with small in-

memory dataset using Pandas DataFrames. Here, we will be replacing the code that uses 

data from a pandas DF with MinibatchSource. First, we need to create an instance of 

MinibatchSource with the help of following steps: 

Implementation Example 

Step 1: First, from cntk.io module import the components for the minibatchsource as 

follows: 

from cntk.io import StreamDef, StreamDefs, MinibatchSource, CTFDeserializer, 

INFINITY_REPEAT 

Step 2: Now, by using StreamDef class, crate a stream definition for the labels.  

labels_stream = StreamDef(field=’labels’, shape=3, is_sparse=False)  

Step 3: Next, create to read the features filed from the input file, create another 

instance of StreamDef as follows.  

feature_stream = StreamDef(field=’features’, shape=4, is_sparse=False)  

Step 4: Now, we need to provide iris.ctf file as input and initialise the deserializer as 

follows: 
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deserializer = CTFDeserializer(‘iris.ctf’, StreamDefs(labels=label_stream, 

features=features_stream)  

Step 5: At last, we need to create instance of minisourceBatch by using deserializer 

as follows: 

Minibatch_source = MinibatchSource(deserializer, randomize=True)  

Creating a MinibatchSource instance ― Complete implementation 

example 

from cntk.io import StreamDef, StreamDefs, MinibatchSource, CTFDeserializer, 

INFINITY_REPEAT 

labels_stream = StreamDef(field=’labels’, shape=3, is_sparse=False)  

feature_stream = StreamDef(field=’features’, shape=4, is_sparse=False)  

deserializer = CTFDeserializer(‘iris.ctf’, StreamDefs(labels=label_stream, 

features=features_stream)  

Minibatch_source = MinibatchSource(deserializer, randomize=True)  

Creating MCTF file 

As you have seen above, we are taking the data from ‘iris.ctf’ file. It has the file format 

called CNTK Text Format(CTF). It is mandatory to create a CTF file to get the data for 

the MinibatchSource instance we created above. Let us see how we can create a CTF 

file. 

Implementation Example 

Step 1: First, we need to import the pandas and numpy packages as follows: 

import pandas as pd 

import numpy as np 

Step 2: Next, we need to load our data file, i.e. iris.csv into memory. Then, store it in 

the df_source variable. 

df_source = pd.read_csv(‘iris.csv’, names = [‘sepal_length’, ‘sepal_width’, 

‘petal_length’, ‘petal_width’, ‘species’], index_col=False)  

Step 3: Now, by using iloc indexer as the features, take the content of the first four 

columns. Also, use the data from species column as follows:  

features = df_source.iloc[: , :4].values 

labels = df_source[‘species’].values  

Step 4: Next, we need to create a mapping between the label name and its numeric 

representation. It can be done by creating label_mapping as follows:  
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label_mapping = {‘Iris-Setosa’ : 0, ‘Iris-Versicolor’ : 1, ‘Iris-Virginica’ : 

2} 

Step 5: Now, convert the labels to a set of one-hot encoded vectors as follows:  

labels = [one_hot(label_mapping[v], 3) for v in labels] 

Now, as we did before, create a utility function called one_hot to encode the labels. It 

can be done as follows: 

 def one_hot(index, length): 

result = np.zeros(length) 

result[index] = 1 

return result 

As, we have loaded and preprocessed the data, it’s time to store it on disk in the CTF file 

format. We can do it with the help of following Python code: 

 With open(‘iris.ctf’, ‘w’) as output_file: 

for index in range(0, feature.shape[0]): 

feature_values = ‘ ‘.join([str(x) for x in np.nditer(features[index])]) 

label_values = ‘ ‘.join([str(x) for x in np.nditer(labels[index])]) 

output_file.write(‘features {} | labels {} \n’.format(feature_values, 

label_values)) 

Creating a MCTF file ― Complete implementation example  

import pandas as pd 

import numpy as np 

df_source = pd.read_csv(‘iris.csv’, names = [‘sepal_length’, ‘sepal_width’, 

‘petal_length’, ‘petal_width’, ‘species’], index_col=False)  

features = df_source.iloc[: , :4].values 

labels = df_source[‘species’].values  

label_mapping = {‘Iris-Setosa’ : 0, ‘Iris-Versicolor’ : 1, ‘Iris-Virginica’ : 

2} 

 

labels = [one_hot(label_mapping[v], 3) for v in labels] 

def one_hot(index, length): 

result = np.zeros(length) 

result[index] = 1 

 

return result 
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With open(‘iris.ctf’, ‘w’) as output_file: 

for index in range(0, feature.shape[0]): 

feature_values = ‘ ‘.join([str(x) for x in np.nditer(features[index])]) 

label_values = ‘ ‘.join([str(x) for x in np.nditer(labels[index])]) 

output_file.write(‘features {} | labels {} \n’.format(feature_values, 

label_values)) 

Feeding the data 

Once you create MinibatchSource instance, we need to train it. We can use the same 

training logic as used when we worked with small in-memory datasets. Here, we will use 

MinibatchSource instance as the input for the train method on loss function as follows: 

Implementation Example 

Step 1: In order to log the output of the training session, first import the 

ProgressPrinter from cntk.logging module as follows: 

from cntk.logging import ProgressPrinter 

Step 2: Next, to set up the training session, import the trainer and training_session 

from cntk.train module as follows: 

from cntk.train import Trainer, training_session 

Step 3: Now, we need to define some set of constants like minibatch_size, 

samples_per_epoch and num_epochs as follows: 

minbatch_size = 16 

samples_per_epoch = 150 

num_epochs = 30  

Step 4: Next, in order to know CNTK how to read data during training, we need to 

define a mapping between the input variable for the network and the streams in the 

minibatch source. 

input_map = { 

 

  features: minibatch.source.streams.features, 

  labels: minibatch.source.streams.features 

 } 

Step 5: Next, to log the output of the training process, initialise the progress_printer 

variable with a new ProgressPrinter instance as follows: 

progress_writer = ProgressPrinter(0) 
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Step 6: At last, we need to invoke the train method on the loss as follows: 

train_history = loss.train(minibatch_source,  

parameter_learners=[learner], 

 model_inputs_to_streams=input_map, 

callbacks=[progress_writer], 

epoch_size=samples_per_epoch, 

max_epochs=num_epochs) 

Feeding the data ― Complete implementation example  

from cntk.logging import ProgressPrinter 

from cntk.train import Trainer, training_session 

minbatch_size = 16 

samples_per_epoch = 150 

num_epochs = 30  

input_map = { 

 features: minibatch.source.streams.features, 

 labels: minibatch.source.streams.features 

} 

progress_writer = ProgressPrinter(0) 

train_history = loss.train(minibatch_source,  

parameter_learners=[learner], 

 model_inputs_to_streams=input_map, 

callbacks=[progress_writer], 

epoch_size=samples_per_epoch, 

max_epochs=num_epochs) 

Output 

------------------------------------------------------------------- 

 average      since    average      since      examples 

    loss       last     metric       last 

 ------------------------------------------------------ 

Learning rate per minibatch: 0.1 

     1.21       1.21          0          0            32 

 

     1.15       0.12          0          0            96 

[………]     
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This chapter will explain how to measure the model performance in CNKT. 

Strategy to validate model performance 

After building a ML model, we used to train it using a set of data samples. Because of 

this training our ML model learns and derive some general rules. The performance of ML 

model matters when we feed new samples, i.e., different samples than provided at the 

time of training, to the model. The model behaves differently in that case. It may be 

worse at making a good prediction on those new samples. 

But the model must work well for new samples as well because in production 

environment we will get different input than we used sample data for training purpose. 

That’s the reason, we should validate the ML model by using a set of samples different 

from the samples we used for training purpose. Here, we are going to discuss two 

different techniques for creating a dataset for validating a NN. 

Hold-out dataset 

It is one of the easiest methods for creating a dataset to validate a NN. As name implies, 

in this method we will be holding back one set of samples from training (say 20%) and 

using it to test the performance of our ML model. Following diagram shows the ratio 

between training and validation samples: 

 

Hold-out dataset model ensures that we have enough data to train our ML model and at 

the same time we will have a reasonable number of samples to get good measurement 

of model’s performance.  

In order to include in the training set and test set, it’s a good practice to choose random 

samples from the main dataset. It ensures an even distribution between training and 

test set. 

10. CNTK — Measuring Performance 
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Following is an example in which we are producing own hold-out dataset by using 

train_test_split function from the scikit-learn library.   

Example 

from sklearn.datasets import load_iris 

iris = load_iris() 

X = iris.data 

y = iris.target 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=1) 

# Here above test_size = 0.2 represents that we provided 20% of the data as 

test data. 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn import metrics 

classifier_knn = KNeighborsClassifier(n_neighbors=3) 

classifier_knn.fit(X_train, y_train) 

y_pred = classifier_knn.predict(X_test) 

# Providing sample data and the model will make prediction out of that data 

sample = [[5, 5, 3, 2], [2, 4, 3, 5]] 

preds = classifier_knn.predict(sample) 

pred_species = [iris.target_names[p] for p in preds] print("Predictions:", 

pred_species) 

Output 

Predictions: ['versicolor', 'virginica'] 

While using CNTK, we need to randomise the order of our dataset each time we train our 

model because: 

 Deep learning algorithms are highly influenced by the random-number 

generators. 

 The order in which we provide the samples to NN during training greatly affects 

its performance. 

The major downside of using the hold-out dataset technique is that it is unreliable 

because sometimes we get very good results but sometimes, we get bad results.  

K-fold cross validation 

To make our ML model more reliable, there is a technique called K-fold cross 

validation. In nature K-fold cross validation technique is same as the previous 
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technique, but it repeats it several times-usually about 5 to 10 times. Following diagram 

represents its concept: 

 

Working of K-fold cross validation 

The working of K-fold cross validation can be understood with the help of following 

steps: 
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Step 1: Like in Hand-out dataset technique, in K-fold cross validation technique, first we 

need to split the dataset into a training and test set. Ideally, the ratio is 80-20, i.e. 80% 

of training set and 20% of test set. 

Step 2: Next, we need to train our model using the training set. 

Step 3: At last, we will be using the test set to measure the performance of our model. 

The only difference between Hold-out dataset technique and k-cross validation technique 

is that the above process gets repeated usually for 5 to 10 times and at the end the 

average is calculated over all the performance metrics. That average would be the final 

performance metrics. 

Let us see an example with a small dataset: 

Example 

from numpy import array 

from sklearn.model_selection import KFold 

data = array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]) 

kfold = KFold(5, True, 1) 

for train, test in kfold.split(data): 

    print('train: %s, test: %s' % (data[train],(data[test]))  

Output 

train: [0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9], test: [0.3 1. ] 

train: [0.1 0.2 0.3 0.4 0.6 0.8 0.9 1. ], test: [0.5 0.7] 

train: [0.2 0.3 0.5 0.6 0.7 0.8 0.9 1. ], test: [0.1 0.4] 

train: [0.1 0.3 0.4 0.5 0.6 0.7 0.9 1. ], test: [0.2 0.8] 

train: [0.1 0.2 0.3 0.4 0.5 0.7 0.8 1. ], test: [0.6 0.9] 

As we see, because of using a more realistic training and test scenario, k-fold cross 

validation technique gives us a much more stable performance measurement but, on the 

downside, it takes a lot of time when validating deep learning models. 

CNTK does not support for k-cross validation, hence we need to write our own script to 

do so. 

Detecting underfitting and overfitting 

Whether, we use Hand-out dataset or k-fold cross-validation technique, we will discover 

that the output for the metrics will be different for dataset used for training and the 

dataset used for validation.  

Detecting overfitting 

The phenomenon called overfitting is a situation where our ML model, models the 

training data exceptionally well, but fails to perform well on the testing data, i.e. was not 

able to predict test data.  
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It happens when a ML model learns a specific pattern and noise from the training data to 

such an extent, that it negatively impacts that model’s ability to generalise from the 

training data to new, i.e. unseen data. Here, noise is the irrelevant information or 

randomness in a dataset.  

Following are the two ways with the help of which we can detect weather our model is 

overfit or not: 

 The overfit model will perform well on the same samples we used for training, but 

it will perform very bad on the new samples, i.e. samples different from training. 

 The model is overfit during validation if the metric on the test set is lower than 

the same metric, we use on our training set.  

Detecting underfitting 

Another situation that can arise in our ML is underfitting. This is a situation where, our 

ML model didn’t model the training data well and fails to predict useful output. When we 

start training the first epoch, our model will be underfitting, but will become less underfit 

as training progress. 

One of the ways to detect, whether our model is underfit or not is to look at the metrics 

for training set and test set. Our model will be underfit if the metric on the test set is 

higher than the metric on the training set. 
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In this chapter, we will study how to classify neural network by using CNTK. 

Introduction 

Classification may be defined as the process to predict categorial output labels or 

responses for the given input data. The categorised output, which will be based on what 

the model has learned in training phase, can have the form such as “Black” or “White” or 

“spam” or “no spam”.  

On the other hand, mathematically, it is the task of approximating a mapping function 

say f from input variables say X to the output variables say Y.  

A classic example of classification problem can be the spam detection in e-mails. It is 

obvious that there can be only two categories of output, “spam” and “no spam”.  

To implement such classification, we first need to do training of the classifier where 

“spam” and “no spam” emails would be used as the training data. Once, the classifier 

trained successfully, it can be used to detect an unknown email.   

Here, we are going to create a 4-5-3 NN using iris flower dataset having the following: 

 4-input nodes (one for each predictor value). 

 5-hidden processing nodes. 

 3-output nodes (because there are three possible species in iris dataset). 

Loading Dataset 

We will be using iris flower dataset, from which we want to classify species of iris flowers 

based on the physical properties of sepal width and length, and petal width and length. 

The dataset describes the physical properties of different varieties of iris flowers: 

 Sepal length 

 Sepal width 

 Petal length 

 Petal width 

 Class i.e. iris setosa or iris versicolor or iris virginica 

We have iris.CSV file which we used before in previous chapters also. It can be loaded 

with the help of Pandas library. But, before using it or loading it for our classifier, we 

need to prepare the training and test files, so that it can be used easily with CNTK. 

Preparing training & test files 

Iris dataset is one of the most popular datasets for ML projects. It has 150 data items 

and the raw data looks as follows: 

11. CNTK — Neural Network Classification  
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5.1 3.5 1.4 0.2 setosa 

4.9 3.0 1.4 0.2 setosa 

… 

7.0 3.2 4.7 1.4 versicolor 

6.4 3.2 4.5 1.5 versicolor 

… 

6.3 3.3 6.0 2.5 virginica 

5.8 2.7 5.1 1.9 virginica 

 As told earlier, the first four values on each line describes the physical properties of 

different varieties, i.e. Sepal length, Sepal width, Petal length, Petal width of iris flowers.  

But, we should have to convert the data in the format, that can be easily used by CNTK 

and that format is .ctf file (we created one iris.ctf in previous section also). It will look 

like as follows: 

|attribs 5.1 3.5 1.4 0.2|species 1 0 0 

|attribs 4.9 3.0 1.4 0.2|species 1 0 0 

… 

|attribs 7.0 3.2 4.7 1.4|species 0 1 0 

|attribs 6.4 3.2 4.5 1.5|species 0 1 0 

… 

|attribs 6.3 3.3 6.0 2.5|species 0 0 1 

|attribs 5.8 2.7 5.1 1.9|species 0 0 1 

In the above data, the |attribs tag mark the start of the feature value and the 

|species tags the class label values. We can also use any other tag names of our wish, 

even we can add item ID as well. For example, look at the following data: 

|ID 001 |attribs 5.1 3.5 1.4 0.2|species 1 0 0 |#setosa 

|ID 002 |attribs 4.9 3.0 1.4 0.2|species 1 0 0 |#setosa 

… 

|ID 051 |attribs 7.0 3.2 4.7 1.4|species 0 1 0 |#versicolor 

|ID 052 |attribs 6.4 3.2 4.5 1.5|species 0 1 0 |#versicolor 

… 

There are total 150 data items in iris dataset and for this example, we will be using 80-

20 hold-out dataset rule i.e. 80% (120 items) data items for training purpose and 

remaining 20% (30 items) data items for testing purpose. 

Constructing Classification model 

First, we need to process the data files in CNTK format and for that we are going to use 

the helper function named create_reader as follows: 
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def create_reader(path, input_dim, output_dim, rnd_order, sweeps): 

x_strm = C.io.StreamDef(field='attribs', shape=input_dim, is_sparse=False) 

y_strm = C.io.StreamDef(field='species', shape=output_dim, is_sparse=False)  

streams = C.io.StreamDefs(x_src=x_strm, y_src=y_strm)  

deserial = C.io.CTFDeserializer(path, streams) 

mb_src = C.io.MinibatchSource(deserial, randomize=rnd_order, max_sweeps=sweeps)  

return mb_src 

Now, we need to set the architecture arguments for our NN and also provide the location 

of the data files. It can be done with the help of following python code: 

def main():  

print("Using CNTK version = " + str(C.__version__) + "\n")  

input_dim = 4  

hidden_dim = 5  

output_dim = 3  

train_file = ".\\...\\" #provide the name of the training file(120 data items)  

test_file = ".\\...\\" #provide the name of the test file(30 data items) 

Now, with the help of following code line our program will create the untrained NN:  

X = C.ops.input_variable(input_dim, np.float32) 

Y = C.ops.input_variable(output_dim, np.float32) 

with C.layers.default_options(init=C.initializer.uniform(scale=0.01, seed=1)):  

hLayer = C.layers.Dense(hidden_dim, activation=C.ops.tanh, name='hidLayer')(X)  

oLayer = C.layers.Dense(output_dim, activation=None, name='outLayer')(hLayer)  

nnet = oLayer  

model = C.ops.softmax(nnet)   

Now, once we created the dual untrained model, we need to set up a Learner algorithm 

object and afterwards use it to create a Trainer training object. We are going to use SGD 

learner and cross_entropy_with_softmax loss function: 

tr_loss = C.cross_entropy_with_softmax(nnet, Y)  

tr_clas = C.classification_error(nnet, Y)  

max_iter = 2000  

batch_size = 10  

learn_rate = 0.01  

learner = C.sgd(nnet.parameters, learn_rate)  

trainer = C.Trainer(nnet, (tr_loss, tr_clas), [learner])   
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Code the learning algorithm as follows: 

max_iter = 2000  

batch_size = 10  

lr_schedule = C.learning_parameter_schedule_per_sample([(1000, 0.05), (1, 

0.01)])  

mom_sch = C.momentum_schedule([(100, 0.99), (0, 0.95)], batch_size)  

learner = C.fsadagrad(nnet.parameters, lr=lr_schedule, momentum=mom_sch)  

trainer = C.Trainer(nnet, (tr_loss, tr_clas), [learner])   

Now, once we finished with Trainer object, we need to create a reader function to read 

the training data: 

rdr = create_reader(train_file, input_dim, output_dim, rnd_order=True, 

sweeps=C.io.INFINITELY_REPEAT)  

iris_input_map = { X : rdr.streams.x_src, Y : rdr.streams.y_src }   

Now it’s time to train our NN model: 

for i in range(0, max_iter):  

curr_batch = rdr.next_minibatch(batch_size, input_map=iris_input_map) 

trainer.train_minibatch(curr_batch)  

if i % 500 == 0:  

mcee = trainer.previous_minibatch_loss_average  

macc = (1.0 - trainer.previous_minibatch_evaluation_average) * 100  

print("batch %4d: mean loss = %0.4f, accuracy = %0.2f%% " \ % (i, mcee, macc)) 

Once, we have done with training, let’s evaluate the model using test data items: 

print("\nEvaluating test data \n")  

rdr = create_reader(test_file, input_dim, output_dim, rnd_order=False, 

sweeps=1)  

iris_input_map = { X : rdr.streams.x_src, Y : rdr.streams.y_src }  

num_test = 30  

all_test = rdr.next_minibatch(num_test, input_map=iris_input_map) acc = (1.0 - 

trainer.test_minibatch(all_test)) * 100  

print("Classification accuracy = %0.2f%%" % acc) 

After evaluating the accuracy of our trained NN model, we will be using it for making a 

prediction on unseen data: 

np.set_printoptions(precision = 1, suppress=True)  

unknown = np.array([[6.4, 3.2, 4.5, 1.5]], dtype=np.float32) 
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print("\nPredicting Iris species for input features: ")  

print(unknown[0]) pred_prob = model.eval(unknown)  

np.set_printoptions(precision = 4, suppress=True)  

print("Prediction probabilities are: ")  

print(pred_prob[0]) 

Complete Classification Model 

Import numpy as np 

Import cntk as C 

def create_reader(path, input_dim, output_dim, rnd_order, sweeps): 

x_strm = C.io.StreamDef(field='attribs', shape=input_dim, is_sparse=False) 

y_strm = C.io.StreamDef(field='species', shape=output_dim, is_sparse=False)  

streams = C.io.StreamDefs(x_src=x_strm, y_src=y_strm)  

deserial = C.io.CTFDeserializer(path, streams) 

mb_src = C.io.MinibatchSource(deserial, randomize=rnd_order, max_sweeps=sweeps)  

return mb_src 

def main():  

print("Using CNTK version = " + str(C.__version__) + "\n")  

input_dim = 4  

hidden_dim = 5  

output_dim = 3  

train_file = ".\\...\\" #provide the name of the training file(120 data items)  

test_file = ".\\...\\" #provide the name of the test file(30 data items) 

X = C.ops.input_variable(input_dim, np.float32) 

Y = C.ops.input_variable(output_dim, np.float32) 

with C.layers.default_options(init=C.initializer.uniform(scale=0.01, seed=1)):  

hLayer = C.layers.Dense(hidden_dim, activation=C.ops.tanh, name='hidLayer')(X)  

oLayer = C.layers.Dense(output_dim, activation=None, name='outLayer')(hLayer)  

nnet = oLayer  

model = C.ops.softmax(nnet)   

tr_loss = C.cross_entropy_with_softmax(nnet, Y)  

tr_clas = C.classification_error(nnet, Y)  

 

max_iter = 2000  

batch_size = 10  

learn_rate = 0.01  
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learner = C.sgd(nnet.parameters, learn_rate)  

trainer = C.Trainer(nnet, (tr_loss, tr_clas), [learner])   

max_iter = 2000  

batch_size = 10  

lr_schedule = C.learning_parameter_schedule_per_sample([(1000, 0.05), (1, 

0.01)])  

mom_sch = C.momentum_schedule([(100, 0.99), (0, 0.95)], batch_size)  

learner = C.fsadagrad(nnet.parameters, lr=lr_schedule, momentum=mom_sch)  

trainer = C.Trainer(nnet, (tr_loss, tr_clas), [learner])   

rdr = create_reader(train_file, input_dim, output_dim, rnd_order=True, 

sweeps=C.io.INFINITELY_REPEAT)  

iris_input_map = { X : rdr.streams.x_src, Y : rdr.streams.y_src }   

for i in range(0, max_iter):  

curr_batch = rdr.next_minibatch(batch_size, input_map=iris_input_map) 

trainer.train_minibatch(curr_batch)  

if i % 500 == 0:  

mcee = trainer.previous_minibatch_loss_average  

macc = (1.0 - trainer.previous_minibatch_evaluation_average) * 100  

print("batch %4d: mean loss = %0.4f, accuracy = %0.2f%% " \ % (i, mcee, macc)) 

print("\nEvaluating test data \n")  

rdr = create_reader(test_file, input_dim, output_dim, rnd_order=False, 

sweeps=1)  

iris_input_map = { X : rdr.streams.x_src, Y : rdr.streams.y_src }  

num_test = 30  

all_test = rdr.next_minibatch(num_test, input_map=iris_input_map) acc = (1.0 - 

trainer.test_minibatch(all_test)) * 100  

print("Classification accuracy = %0.2f%%" % acc) 

np.set_printoptions(precision = 1, suppress=True)  

unknown = np.array([[7.0, 3.2, 4.7, 1.4]], dtype=np.float32) 

print("\nPredicting species for input features: ")  

print(unknown[0])  

pred_prob = model.eval(unknown)  

np.set_printoptions(precision = 4, suppress=True)  

print("Prediction probabilities: ")  

print(pred_prob[0]) 

 

if __name__== ”__main__”: 

 main() 
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Output 

Using CNTK version = 2.7 

batch    0: mean loss = 1.0986, mean accuracy = 40.00% 

batch  500: mean loss = 0.6677, mean accuracy = 80.00% 

batch 1000: mean loss = 0.5332, mean accuracy = 70.00% 

batch 1500: mean loss = 0.2408, mean accuracy = 100.00% 

Evaluating test data 

Classification accuracy = 94.58% 

Predicting species for input features: 

[7.0 3.2 4.7 1.4] 

Prediction probabilities: 

[0.0847 0.736  0.113] 

Saving the trained model 

This Iris dataset has only 150 data items, hence it would take only a few seconds to train 

the NN classifier model, but training on a large dataset having hundred or thousand data 

items can take hours or even days.  

We can save our model so that, we won’t have to retain it from scratch. With the help of 

following Python code, we can save our trained NN: 

nn_classifier = “.\\neuralclassifier.model” #provide the name of the file 

 model.save(nn_classifier, format=C.ModelFormat.CNTKv2) 

Following are the arguments of save() function used above: 

 File name is the first argument of save() function. It can also be write along with 

the path of file. 

 Another parameter is the format parameter which has a default value 

C.ModelFormat.CNTKv2. 

Loading the trained model 

Once you saved the trained model, it’s very easy to load that model. We only need to 

use the load () function. Let’s check this in the following example: 

import numpy as np 

import cntk as C 

model = C.ops.functions.Function.load(“.\\neuralclassifier.model”) 

np.set_printoptions(precision = 1, suppress=True)  

unknown = np.array([[7.0, 3.2, 4.7, 1.4]], dtype=np.float32) 
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print("\nPredicting species for input features: ")  

print(unknown[0])  

pred_prob = model.eval(unknown)  

np.set_printoptions(precision = 4, suppress=True)  

print("Prediction probabilities: ")  

print(pred_prob[0]) 

The benefit of saved model is that, once you load a saved model, it can be used exactly 

as if the model had just been trained. 
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Let us understand, what is neural network binary classification using CNTK, in this 

chapter. 

Binary classification using NN is like multi-class classification, the only thing is that there 

are just two output nodes instead of three or more. Here, we are going to perform 

binary classification using a neural network by using two techniques namely one-node 

and two-node technique. One-node technique is more common than two-node 

technique. 

Loading Dataset 

For both these techniques to implement using NN, we will be using banknote dataset. 

The dataset can be downloaded from UCI Machine Learning Repository which is 

available at https://archive.ics.uci.edu/ml/datasets/banknote+authentication.  

For our example, we will be using 50 authentic data items having class forgery = 0, and 

the first 50 fake items having class forgery = 1. 

Preparing training & test files 

There are 1372 data items in the full dataset. The raw dataset looks as follows: 

3.6216, 8.6661, -2.8076, -0.44699, 0 

4.5459, 8.1674, -2.4586, -1.4621, 0 

… 

-1.3971, 3.3191, -1.3927, -1.9948, 1 

0.39012, -0.14279, -0.031994, 0.35084, 1 

Now, first we need to convert this raw data into two-node CNTK format, which would be 

as follows: 

|stats 3.62160000 8.66610000 -2.80730000 -0.44699000 |forgery 0 1 |# authentic 

|stats 4.54590000 8.16740000 -2.45860000 -1.46210000 |forgery 0 1 |# authentic 

. . .  

|stats -1.39710000 3.31910000 -1.39270000 -1.99480000 |forgery 1 0 |# fake 

|stats 0.39012000 -0.14279000 -0.03199400 0.35084000 |forgery 1 0 |# fake 

You can use the following python program to create CNTK-format data from Raw data: 

fin = open(".\\...", "r") #provide the location of saved dataset text file. 

for line in fin:  

 

  line = line.strip()  

12. CNTK — Neural Network Binary Classification  

https://archive.ics.uci.edu/ml/datasets/banknote+authentication
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  tokens = line.split(",")  

  if tokens[4] == "0":  

    print("|stats %12.8f %12.8f %12.8f %12.8f |forgery 0 1 |# authentic" % \  

(float(tokens[0]), float(tokens[1]), float(tokens[2]), float(tokens[3])) )  

  else:  

    print("|stats %12.8f %12.8f %12.8f %12.8f |forgery 1 0 |# fake" % \  

(float(tokens[0]), float(tokens[1]), float(tokens[2]), float(tokens[3])) )  

fin.close() 

Two-node binary Classification model 

There is very little difference between two-node classification and multi-class 

classification. Here we first, need to process the data files in CNTK format and for that 

we are going to use the helper function named create_reader as follows: 

def create_reader(path, input_dim, output_dim, rnd_order, sweeps): 

x_strm = C.io.StreamDef(field='stats', shape=input_dim, is_sparse=False) 

y_strm = C.io.StreamDef(field='forgery', shape=output_dim, is_sparse=False)  

streams = C.io.StreamDefs(x_src=x_strm, y_src=y_strm)  

deserial = C.io.CTFDeserializer(path, streams) 

mb_src = C.io.MinibatchSource(deserial, randomize=rnd_order, max_sweeps=sweeps)  

return mb_src 

Now, we need to set the architecture arguments for our NN and also provide the location 

of the data files. It can be done with the help of following python code: 

def main():  

print("Using CNTK version = " + str(C.__version__) + "\n")  

input_dim = 4  

hidden_dim = 10  

output_dim = 2  

train_file = ".\\...\\" #provide the name of the training file 

test_file = ".\\...\\" #provide the name of the test file 

Now, with the help of following code line our program will create the untrained NN:  

X = C.ops.input_variable(input_dim, np.float32) 

 

Y = C.ops.input_variable(output_dim, np.float32) 

with C.layers.default_options(init=C.initializer.uniform(scale=0.01, seed=1)):  
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hLayer = C.layers.Dense(hidden_dim, activation=C.ops.tanh, name='hidLayer')(X)  

 

oLayer = C.layers.Dense(output_dim, activation=None, name='outLayer')(hLayer)  

nnet = oLayer  

model = C.ops.softmax(nnet)   

Now, once we created the dual untrained model, we need to set up a Learner algorithm 

object and afterwards use it to create a Trainer training object. We are going to use SGD 

learner and cross_entropy_with_softmax loss function: 

tr_loss = C.cross_entropy_with_softmax(nnet, Y)  

tr_clas = C.classification_error(nnet, Y)  

max_iter = 500  

batch_size = 10  

learn_rate = 0.01  

learner = C.sgd(nnet.parameters, learn_rate)  

trainer = C.Trainer(nnet, (tr_loss, tr_clas), [learner])   

Now, once we finished with Trainer object, we need to create a reader function to read 

the training data: 

rdr = create_reader(train_file, input_dim, output_dim, rnd_order=True, 

sweeps=C.io.INFINITELY_REPEAT)  

banknote_input_map = { X : rdr.streams.x_src, Y : rdr.streams.y_src }   

Now, it is time to train our NN model: 

for i in range(0, max_iter):  

curr_batch = rdr.next_minibatch(batch_size, input_map=iris_input_map) 

trainer.train_minibatch(curr_batch)  

if i % 500 == 0:  

mcee = trainer.previous_minibatch_loss_average  

macc = (1.0 - trainer.previous_minibatch_evaluation_average) * 100  

print("batch %4d: mean loss = %0.4f, accuracy = %0.2f%% " \ % (i, mcee, macc)) 

Once training is completed, let us evaluate the model using test data items: 

print("\nEvaluating test data \n")  

rdr = create_reader(test_file, input_dim, output_dim, rnd_order=False, 

sweeps=1)  

 

banknote_input_map = { X : rdr.streams.x_src, Y : rdr.streams.y_src }  

num_test = 20  
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all_test = rdr.next_minibatch(num_test, input_map=iris_input_map) acc = (1.0 - 

trainer.test_minibatch(all_test)) * 100  

print("Classification accuracy = %0.2f%%" % acc) 

After evaluating the accuracy of our trained NN model, we will be using it for making a 

prediction on unseen data: 

np.set_printoptions(precision = 1, suppress=True)  

unknown = np.array([[0.6, 1.9, -3.3, -0.3]], dtype=np.float32) 

print("\nPredicting Banknote authenticity for input features: ")  

print(unknown[0])  

pred_prob = model.eval(unknown)  

np.set_printoptions(precision = 4, suppress=True)  

print("Prediction probabilities are: ")  

print(pred_prob[0]) 

if pred_prob[0,0] < pred_prob[0,1]: 

  print(“Prediction: authentic”) 

else: 

  print(“Prediction: fake”) 

Complete Two-node Classification Model 

def create_reader(path, input_dim, output_dim, rnd_order, sweeps): 

x_strm = C.io.StreamDef(field='stats', shape=input_dim, is_sparse=False) 

y_strm = C.io.StreamDef(field='forgery', shape=output_dim, is_sparse=False)  

streams = C.io.StreamDefs(x_src=x_strm, y_src=y_strm)  

deserial = C.io.CTFDeserializer(path, streams) 

mb_src = C.io.MinibatchSource(deserial, randomize=rnd_order, max_sweeps=sweeps)  

return mb_src 

def main():  

print("Using CNTK version = " + str(C.__version__) + "\n")  

input_dim = 4  

hidden_dim = 10  

output_dim = 2  

train_file = ".\\...\\" #provide the name of the training file 

test_file = ".\\...\\" #provide the name of the test file 

 

X = C.ops.input_variable(input_dim, np.float32) 

Y = C.ops.input_variable(output_dim, np.float32) 
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with C.layers.default_options(init=C.initializer.uniform(scale=0.01, seed=1)):  

hLayer = C.layers.Dense(hidden_dim, activation=C.ops.tanh, name='hidLayer')(X)  

oLayer = C.layers.Dense(output_dim, activation=None, name='outLayer')(hLayer)  

 

 

nnet = oLayer  

model = C.ops.softmax(nnet)   

tr_loss = C.cross_entropy_with_softmax(nnet, Y)  

tr_clas = C.classification_error(nnet, Y)  

max_iter = 500  

batch_size = 10  

learn_rate = 0.01  

learner = C.sgd(nnet.parameters, learn_rate)  

trainer = C.Trainer(nnet, (tr_loss, tr_clas), [learner])   

rdr = create_reader(train_file, input_dim, output_dim, rnd_order=True, 

sweeps=C.io.INFINITELY_REPEAT)  

banknote_input_map = { X : rdr.streams.x_src, Y : rdr.streams.y_src }   

for i in range(0, max_iter):  

curr_batch = rdr.next_minibatch(batch_size, input_map=iris_input_map) 

trainer.train_minibatch(curr_batch)  

if i % 500 == 0:  

mcee = trainer.previous_minibatch_loss_average  

macc = (1.0 - trainer.previous_minibatch_evaluation_average) * 100  

print("batch %4d: mean loss = %0.4f, accuracy = %0.2f%% " \ % (i, mcee, macc)) 

print("\nEvaluating test data \n")  

rdr = create_reader(test_file, input_dim, output_dim, rnd_order=False, 

sweeps=1)  

banknote_input_map = { X : rdr.streams.x_src, Y : rdr.streams.y_src }  

num_test = 20  

all_test = rdr.next_minibatch(num_test, input_map=iris_input_map) acc = (1.0 - 

trainer.test_minibatch(all_test)) * 100  

print("Classification accuracy = %0.2f%%" % acc) 

np.set_printoptions(precision = 1, suppress=True)  

unknown = np.array([[0.6, 1.9, -3.3, -0.3]], dtype=np.float32) 

print("\nPredicting Banknote authenticity for input features: ") 

  

print(unknown[0])  

pred_prob = model.eval(unknown)  



Microsoft Cognitive Toolkit (CNTK)       

   66 

 

np.set_printoptions(precision = 4, suppress=True)  

print("Prediction probabilities are: ")  

print(pred_prob[0]) 

if pred_prob[0,0] < pred_prob[0,1]: 

 

  print(“Prediction: authentic”) 

 

else: 

  print(“Prediction: fake”) 

if __name__== ”__main__”: 

 main() 

Output 

Using CNTK version = 2.7 

batch    0: mean loss = 0.6928, accuracy = 80.00% 

batch   50: mean loss = 0.6877, accuracy = 70.00% 

batch  100: mean loss = 0.6432, accuracy = 80.00% 

batch  150: mean loss = 0.4978, accuracy = 80.00% 

batch  200: mean loss = 0.4551, accuracy = 90.00% 

batch  250: mean loss = 0.3755, accuracy = 90.00% 

batch  300: mean loss = 0.2295, accuracy = 100.00% 

batch  350: mean loss = 0.1542, accuracy = 100.00% 

batch  400: mean loss = 0.1581, accuracy = 100.00% 

batch  450: mean loss = 0.1499, accuracy = 100.00% 

Evaluating test data 

Classification accuracy = 84.58% 

Predicting banknote authenticity for input features: 

[0.6 1.9 -3.3 -0.3] 

Prediction probabilities are: 

[0.7847 0.2536] 

Prediction: fake 

One-node binary Classification model 

The implementation program is almost like we have done above for two-node 

classification. The main change is that when using the two-node classification technique.  
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We can use the CNTK built-in classification_error() function, but in case of one-node 

classification CNTK doesn’t support classification_error() function. That’s the reason we 

need to implement a program-defined function as follows: 

def class_acc(mb, x_var, y_var, model):  

num_correct = 0; num_wrong = 0  

x_mat = mb[x_var].asarray() 

 

y_mat = mb[y_var].asarray()  

for i in range(mb[x_var].shape[0]): 

  p = model.eval(x_mat[i] 

  y = y_mat[i] 

  if p[0,0] < 0.5 and y[0,0] == 0.0 or p[0,0] >= 0.5 and y[0,0] == 1.0: 

    num_correct += 1 

  else: 

    num_wrong += 1 

return (num_correct * 100.0)/(num_correct + num_wrong)    

With that change let’s see the complete one-node classification example: 

Complete one-node Classification Model 

import numpy as np 

import cntk as C 

def create_reader(path, input_dim, output_dim, rnd_order, sweeps): 

x_strm = C.io.StreamDef(field='stats', shape=input_dim, is_sparse=False) 

y_strm = C.io.StreamDef(field='forgery', shape=output_dim, is_sparse=False)  

streams = C.io.StreamDefs(x_src=x_strm, y_src=y_strm)  

deserial = C.io.CTFDeserializer(path, streams) 

mb_src = C.io.MinibatchSource(deserial, randomize=rnd_order, max_sweeps=sweeps)  

return mb_src 

def class_acc(mb, x_var, y_var, model):  

num_correct = 0; num_wrong = 0  

x_mat = mb[x_var].asarray() 

y_mat = mb[y_var].asarray()  

 

for i in range(mb[x_var].shape[0]): 

  p = model.eval(x_mat[i] 

  y = y_mat[i] 

  if p[0,0] < 0.5 and y[0,0] == 0.0 or p[0,0] >= 0.5 and y[0,0] == 1.0: 
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    num_correct += 1 

  else: 

    num_wrong += 1 

return (num_correct * 100.0)/(num_correct + num_wrong)    

def main():  

 

 

print("Using CNTK version = " + str(C.__version__) + "\n")  

input_dim = 4  

hidden_dim = 10  

output_dim = 1 

train_file = ".\\...\\" #provide the name of the training file 

test_file = ".\\...\\" #provide the name of the test file 

X = C.ops.input_variable(input_dim, np.float32) 

Y = C.ops.input_variable(output_dim, np.float32) 

with C.layers.default_options(init=C.initializer.uniform(scale=0.01, seed=1)):  

hLayer = C.layers.Dense(hidden_dim, activation=C.ops.tanh, name='hidLayer')(X)  

oLayer = C.layers.Dense(output_dim, activation=None, name='outLayer')(hLayer)  

model = oLayer  

tr_loss = C.cross_entropy_with_softmax(model, Y)  

max_iter = 1000  

batch_size = 10  

learn_rate = 0.01  

learner = C.sgd(model.parameters, learn_rate)  

trainer = C.Trainer(model, (tr_loss), [learner])   

rdr = create_reader(train_file, input_dim, output_dim, rnd_order=True, 

sweeps=C.io.INFINITELY_REPEAT)  

banknote_input_map = {X : rdr.streams.x_src, Y : rdr.streams.y_src }   

for i in range(0, max_iter):  

curr_batch = rdr.next_minibatch(batch_size, input_map=iris_input_map) 

trainer.train_minibatch(curr_batch)  

if i % 100 == 0:  

 

mcee = trainer.previous_minibatch_loss_average  

ca = class_acc(curr_batch, X,Y, model)  

print("batch %4d: mean loss = %0.4f, accuracy = %0.2f%% " \ % (i, mcee, ca)) 

print("\nEvaluating test data \n")  
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rdr = create_reader(test_file, input_dim, output_dim, rnd_order=False, 

sweeps=1)  

banknote_input_map = { X : rdr.streams.x_src, Y : rdr.streams.y_src }  

num_test = 20  

all_test = rdr.next_minibatch(num_test, input_map=iris_input_map)  

acc = class_acc(all_test, X,Y, model)  

print("Classification accuracy = %0.2f%%" % acc) 

np.set_printoptions(precision = 1, suppress=True)  

 

 

unknown = np.array([[0.6, 1.9, -3.3, -0.3]], dtype=np.float32) 

 

print("\nPredicting Banknote authenticity for input features: ")  

print(unknown[0])  

pred_prob = model.eval({X:unknown})  

print("Prediction probability: ")  

print(“%0.4f” % pred_prob[0,0]) 

if pred_prob[0,0] < 0.5: 

  print(“Prediction: authentic”) 

else: 

  print(“Prediction: fake”) 

if __name__== ”__main__”: 

 main() 

Output 

Using CNTK version = 2.7 

batch    0: mean loss = 0.6936, accuracy = 10.00% 

batch  100: mean loss = 0.6882, accuracy = 70.00% 

batch  200: mean loss = 0.6597, accuracy = 50.00% 

batch  300: mean loss = 0.5298, accuracy = 70.00% 

batch  400: mean loss = 0.4090, accuracy = 100.00% 

batch  500: mean loss = 0.3790, accuracy = 90.00% 

 

batch  600: mean loss = 0.1852, accuracy = 100.00% 

batch  700: mean loss = 0.1135, accuracy = 100.00% 

batch  800: mean loss = 0.1285, accuracy = 100.00% 

batch  900: mean loss = 0.1054, accuracy = 100.00% 
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Evaluating test data 

Classification accuracy = 84.00% 

Predicting banknote authenticity for input features: 

[0.6 1.9 -3.3 -0.3] 

Prediction probability: 

0.8846 

Prediction: fake 
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The chapter will help you understand the neural network regression with regards to 

CNTK. 

Introduction 

As we know that, in order to predict a numeric value from one or more predictor 

variables, we use regression. Let’s take an example of predicting the median value of a 

house in say one of the 100 towns. To do so, we have data that includes: -  

 A crime statistic for each town. 

 The age of the houses in each town. 

 A measure of the distance from each town to a prime location. 

 The student-to-teacher ratio in each town. 

 A racial demographic statistic for each town.  

 The median house value in each town. 

Based on these five predictor variables, we would like to predict median house value. 

And for this we can create a linear regression model along the lines of- 

  

In the above equation- 

Y is a predicted median value 

 is a constant and  

 through  all are constants associated with the five predictors we discussed above. 

We also have an alternate approach of using a neural network. It will create more 

accurate prediction model.  

Here, we will be creating a neural network regression model by using CNTK. 

Loading Dataset 

To implement Neural Network regression using CNTK, we will be using Boston area 

house values dataset. The dataset can be downloaded from UCI Machine Learning 

Repository which is available at https://archive.ics.uci.edu/ml/machine-learning-

databases/housing/. This dataset has total 14 variables and 506 instances.  

 

But, for our implementation program we are going to use six of the 14 variables and 100 

instances. Out of 6, 5 as predictors and one as a value-to-predict. From 100 instances, 

we will be using 80 for training and 20 for testing purpose. The value which we want to 

13. CNTK — Neural Network Regression  

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
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predict is the median house price in a town. Let’s see the five predictors we will be 

using: 

 Crime per capita in the town - We would expect smaller values to be 

associated with this predictor. 

 Proportion of owner-occupied units built before 1940 - We would expect 

smaller values to be associated with this predictor because larger value means 

older house.  

 Weighed distance of the town to five Boston employment centers. 

 Area school pupil-to-teacher ratio. 

 An indirect metric of the proportion of black residents in the town. 

Preparing training & test files 

As we did before, first we need to convert the raw data into CNTK format. We are going 

to use first 80 data items for training purpose, so the tab-delimited CNTK format is as 

follows: 

|predictors 1.612820 96.90  3.76  21.00 248.31 |medval 13.50 

|predictors 0.064170 68.20  3.36  19.20 396.90 |medval 18.90 

|predictors 0.097440 61.40  3.38  19.20 377.56 |medval 20.00 

. . .  

Next 20 items, also converted into CNTK format, will used for testing purpose.  

Constructing Regression model 

First, we need to process the data files in CNTK format and for that, we are going to use 

the helper function named create_reader as follows: 

def create_reader(path, input_dim, output_dim, rnd_order, sweeps): 

x_strm = C.io.StreamDef(field='predictors', shape=input_dim, is_sparse=False) 

y_strm = C.io.StreamDef(field='medval', shape=output_dim, is_sparse=False)  

streams = C.io.StreamDefs(x_src=x_strm, y_src=y_strm)  

deserial = C.io.CTFDeserializer(path, streams) 

mb_src = C.io.MinibatchSource(deserial, randomize=rnd_order, max_sweeps=sweeps)  

return mb_src 

Next, we need to create a helper function that accepts a CNTK mini-batch object and 

computes a custom accuracy metric. 

def mb_accuracy(mb, x_var, y_var, model, delta):  

  num_correct = 0 
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  num_wrong = 0  

 

  x_mat = mb[x_var].asarray()  

 

  y_mat = mb[y_var].asarray() 

    for i in range(mb[x_var].shape[0]): 

    v = model.eval(x_mat[i]) 

    y = y_mat[i] 

    if  np.abs(v[0,0] – y[0,0]) < delta: 

       num_correct += 1 

    else: 

       num_wrong += 1 

  return (num_correct * 100.0)/(num_correct + num_wrong) 

Now, we need to set the architecture arguments for our NN and also provide the location 

of the data files. It can be done with the help of following python code: 

def main():  

print("Using CNTK version = " + str(C.__version__) + "\n")  

input_dim = 5  

hidden_dim = 20  

output_dim = 1 

train_file = ".\\...\\" #provide the name of the training file(80 data items)  

test_file = ".\\...\\" #provide the name of the test file(20 data items) 

Now, with the help of following code line our program will create the untrained NN:  

X = C.ops.input_variable(input_dim, np.float32) 

Y = C.ops.input_variable(output_dim, np.float32) 

with C.layers.default_options(init=C.initializer.uniform(scale=0.01, seed=1)):  

hLayer = C.layers.Dense(hidden_dim, activation=C.ops.tanh, name='hidLayer')(X)  

oLayer = C.layers.Dense(output_dim, activation=None, name='outLayer')(hLayer)  

model = C.ops.alias(oLayer)   

Now, once we have created the dual untrained model, we need to set up a Learner 

algorithm object. We are going to use SGD learner and squared_error loss function: 

tr_loss = C.squared_error(model, Y)  

max_iter = 3000 

  

batch_size = 5  
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base_learn_rate = 0.02 

sch = C.learning_parameter_schedule([base_learn_rate, base_learn_rate/2], 

minibatch_size=batch_size, epoch_size=int((max_iter*batch_size)/2))  

learner = C.sgd(model.parameters, sch)  

trainer = C.Trainer(model, (tr_loss), [learner])   

Now, once we finish with Learning algorithm object, we need to create a reader function 

to read the training data: 

rdr = create_reader(train_file, input_dim, output_dim, rnd_order=True, 

sweeps=C.io.INFINITELY_REPEAT)  

boston_input_map = { X : rdr.streams.x_src, Y : rdr.streams.y_src }   

Now, it’s time to train our NN model: 

for i in range(0, max_iter):  

curr_batch = rdr.next_minibatch(batch_size, input_map=boston_input_map) 

trainer.train_minibatch(curr_batch)  

if i % int(max_iter/10) == 0:  

mcee = trainer.previous_minibatch_loss_average  

acc = mb_accuracy(curr_batch, X, Y, model, delta=3.00)  

print("batch %4d: mean squared error = %8.4f, accuracy = %5.2f%% " \ % (i, 

mcee, acc)) 

Once we have done with training, let’s evaluate the model using test data items: 

print("\nEvaluating test data \n")  

rdr = create_reader(test_file, input_dim, output_dim, rnd_order=False, 

sweeps=1)  

boston_input_map = { X : rdr.streams.x_src, Y : rdr.streams.y_src }  

num_test = 20  

all_test = rdr.next_minibatch(num_test, input_map=boston_input_map)  

acc = mb_accuracy(all_test, X, Y, model, delta=3.00)  

print("Prediction accuracy = %0.2f%%" % acc) 

After evaluating the accuracy of our trained NN model, we will be using it for making a 

prediction on unseen data: 

np.set_printoptions(precision = 2, suppress=True)  

unknown = np.array([[0.09, 50.00, 4.5, 17.00, 350.00], dtype=np.float32) 

print("\nPredicting median home value for feature/predictor values: ")  

 

print(unknown[0])  
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pred_prob = model.eval({X: unknown)  

 

print("\nPredicted value is: ")  

print(“$%0.2f (x1000)” %pred_value[0,0]) 

Complete Regression Model 

import numpy as np 

import cntk as C 

def create_reader(path, input_dim, output_dim, rnd_order, sweeps): 

x_strm = C.io.StreamDef(field='predictors', shape=input_dim, is_sparse=False) 

y_strm = C.io.StreamDef(field='medval', shape=output_dim, is_sparse=False)  

streams = C.io.StreamDefs(x_src=x_strm, y_src=y_strm)  

deserial = C.io.CTFDeserializer(path, streams) 

mb_src = C.io.MinibatchSource(deserial, randomize=rnd_order, max_sweeps=sweeps)  

return mb_src 

def mb_accuracy(mb, x_var, y_var, model, delta):  

  num_correct = 0 

  num_wrong = 0  

  x_mat = mb[x_var].asarray()  

  y_mat = mb[y_var].asarray() 

    for i in range(mb[x_var].shape[0]): 

    v = model.eval(x_mat[i]) 

    y = y_mat[i] 

    if  np.abs(v[0,0] – y[0,0]) < delta: 

       num_correct += 1 

    else: 

       num_wrong += 1 

  return (num_correct * 100.0)/(num_correct + num_wrong) 

    

def main():  

print("Using CNTK version = " + str(C.__version__) + "\n")  

input_dim = 5  

hidden_dim = 20  

 

output_dim = 1 

train_file = ".\\...\\" #provide the name of the training file(80 data items)  



Microsoft Cognitive Toolkit (CNTK)       

   76 

 

test_file = ".\\...\\" #provide the name of the test file(20 data items) 

 

 

 

X = C.ops.input_variable(input_dim, np.float32) 

Y = C.ops.input_variable(output_dim, np.float32) 

with C.layers.default_options(init=C.initializer.uniform(scale=0.01, seed=1)):  

hLayer = C.layers.Dense(hidden_dim, activation=C.ops.tanh, name='hidLayer')(X)  

oLayer = C.layers.Dense(output_dim, activation=None, name='outLayer')(hLayer)  

model = C.ops.alias(oLayer)   

tr_loss = C.squared_error(model, Y)  

max_iter = 3000  

batch_size = 5  

base_learn_rate = 0.02 

sch = C.learning_parameter_schedule([base_learn_rate, base_learn_rate/2], 

minibatch_size=batch_size, epoch_size=int((max_iter*batch_size)/2))  

learner = C.sgd(model.parameters, sch)  

trainer = C.Trainer(model, (tr_loss), [learner])   

rdr = create_reader(train_file, input_dim, output_dim, rnd_order=True, 

sweeps=C.io.INFINITELY_REPEAT)  

boston_input_map = { X : rdr.streams.x_src, Y : rdr.streams.y_src }   

for i in range(0, max_iter):  

curr_batch = rdr.next_minibatch(batch_size, input_map=boston_input_map) 

trainer.train_minibatch(curr_batch)  

if i % int(max_iter/10) == 0:  

mcee = trainer.previous_minibatch_loss_average  

acc = mb_accuracy(curr_batch, X, Y, model, delta=3.00)  

print("batch %4d: mean squared error = %8.4f, accuracy = %5.2f%% " \ % (i, 

mcee, acc)) 

print("\nEvaluating test data \n")  

rdr = create_reader(test_file, input_dim, output_dim, rnd_order=False, 

sweeps=1)  

boston_input_map = { X : rdr.streams.x_src, Y : rdr.streams.y_src }  

 

num_test = 20  

all_test = rdr.next_minibatch(num_test, input_map=boston_input_map)  

acc = mb_accuracy(all_test, X, Y, model, delta=3.00)  

print("Prediction accuracy = %0.2f%%" % acc) 
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np.set_printoptions(precision = 2, suppress=True)  

unknown = np.array([[0.09, 50.00, 4.5, 17.00, 350.00], dtype=np.float32) 

print("\nPredicting median home value for feature/predictor values: ")  

print(unknown[0])  

pred_prob = model.eval({X: unknown)  

 

print("\nPredicted value is: ")  

print(“$%0.2f (x1000)” %pred_value[0,0]) 

if __name__== ”__main__”: 

 main() 

Output 

Using CNTK version = 2.7 

batch    0: mean squared error = 385.6727, accuracy = 0.00% 

batch  300: mean squared error = 41.6229,  accuracy = 20.00% 

batch  600: mean squared error = 28.7667,  accuracy = 40.00% 

batch  900: mean squared error = 48.6435,  accuracy = 40.00% 

batch 1200: mean squared error = 77.9562,  accuracy = 80.00% 

batch 1500: mean squared error =  7.8342,  accuracy = 60.00% 

batch 1800: mean squared error = 47.7062,  accuracy = 60.00% 

batch 2100: mean squared error = 40.5068,  accuracy = 40.00% 

batch 2400: mean squared error = 46.5023,  accuracy = 40.00% 

batch 2700: mean squared error = 15.6235,  accuracy = 60.00% 

Evaluating test data 

Prediction accuracy = 64.00% 

Predicting median home value for feature/predictor values: 

[0.09  50. 4.5 17.  350.] 

Predicted value is: 

$21.02(x1000) 

Saving the trained model 

This Boston Home value dataset has only 506 data items (among which we sued only 

100). Hence, it would take only a few seconds to train the NN regressor model, but 

training on a large dataset having hundred or thousand data items can take hours or 

even days.  

We can save our model, so that we won’t have to retain it from scratch. With the help of 

following Python code, we can save our trained NN: 



Microsoft Cognitive Toolkit (CNTK)       

   78 

 

nn_regressor = “.\\neuralregressor.model” #provide the name of the file 

 model.save(nn_regressor, format=C.ModelFormat.CNTKv2) 

Following are the arguments of save() function used above: 

 File name is the first argument of save() function. It can also be written along 

with the path of file. 

 Another parameter is the format parameter which has a default value 

C.ModelFormat.CNTKv2. 

Loading the trained model 

Once you saved the trained model, it’s very easy to load that model. We only need to 

use the load () function. Let’s check this in following example: 

import numpy as np 

import cntk as C 

model = C.ops.functions.Function.load(“.\\neuralregressor.model”) 

np.set_printoptions(precision = 2, suppress=True)  

unknown = np.array([[0.09, 50.00, 4.5, 17.00, 350.00], dtype=np.float32) 

print("\nPredicting area median home value for feature/predictor values: ")  

print(unknown[0])  

pred_prob = model.eval({X: unknown)  

print("\nPredicted value is: ")  

print(“$%0.2f (x1000)” %pred_value[0,0]) 

The benefit of saved model is that once you load a saved model, it can be used exactly 

as if the model had just been trained. 
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This chapter will help you to understand how to measure performance of classification 

model in CNTK. Let us begin with confusion matrix. 

Confusion matrix 

Confusion matrix - a table with the predicted output versus the expected output is the 

easiest way to measure the performance of a classification problem, where the output 

can be of two or more type of classes.  

In order to understand how it works, we are going to create a confusion matrix for a 

binary classification model that predicts, whether a credit card transaction was normal or 

a fraud. It is shown as follows:  

 Actual fraud Actual normal 

Predicted fraud True positive False positive 

Predicted normal False negative True negative 

As we can see, the above sample confusion matrix contains 2 columns, one for class 

fraud and other for class normal. In the same way we have 2 rows, one is added for 

class fraud and other is added for class normal. Following is the explanation of the terms 

associated with confusion matrix: 

 True Positives: When both actual class & predicted class of data point is 1. 

 True Negatives: When both actual class & predicted class of data point is 0. 

 False Positives: When actual class of data point is 0 & predicted class of data 

point is 1. 

 False Negatives: When actual class of data point is 1 & predicted class of data 

point is 0. 

Let’s see, how we can calculate number of different things from the confusion matrix: 

 Accuracy:  It is the number of correct predictions made by our ML classification 

model. It can be calculated with the help of following formula: 

 

 

 Precision:  It tells us how many samples were correctly predicted out of all 

samples we predicted. It can be calculated with the help of following formula: 

 

 

14. CNTK — Classification Model 
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 Recall or Sensitivity:  Recall are the number of positives returned by our ML 

classification model. In other words, it tells us how many of the fraud cases in the 

dataset were actually detected by the model. It can be calculated with the help of 

following formula: 

 

 

 Specificity:  Opposite to recall, it gives the number of negatives returned by our 

ML classification model. It can be calculated with the help of following formula: 

 

F-measure 

We can use F-measure as an alternative of Confusion matrix. The main reason behind 

this, we can’t maximize Recall and Precision at the same time. There is a very strong 

relationship between these metrics and that can be understood with the help of following 

example: 

Suppose, we want to use a DL model to classify cell samples as cancerous or normal. 

Here, to reach maximum precision we need to reduce the number of predictions to 1. 

Although, this can give us reach around 100 percent precision, but recall will become 

really low.  

On the other hand, if we would like to reach maximum recall, we need to make as many 

predictions as possible. Although, this can give us reach around 100 percent recall, but 

precision will become really low.    

In practice, we need to find a way balancing between precision and recall. The F-

measure metric allows us to do so, as it expresses a harmonic average between 

precision and recall. 

 

This formula is called the F1-measure, where the extra term called B is set to 1 to get an 

equal ratio of precision and recall. In order to emphasize recall, we can set the factor B 

to 2. On the other hand, to emphasize precision, we can set the factor B to 0.5. 

Using CNTK to measure classification performance 

In previous section we have created a classification model using Iris flower dataset. 

Here, we will be measuring its performance by using confusion matrix and F-measure 

metric. 

Creating Confusion matrix 
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We already created the model, so we can start the validating process, which includes 

confusion matrix, on the same. First, we are going to create confusion matrix with the 

help of the confusion_matrix function from scikit-learn. For this, we need the real 

labels for our test samples and the predicted labels for the same test samples. 

Let’s calculate the confusion matrix by using following python code: 

from sklearn.metrics import confusion_matrix 

y_true = np.argmax(y_test, axis=1) 

y_pred = np.argmax(z(X_test), axis=1) 

matrix = confusion_matrix(y_true=y_true, y_pred=y_pred) 

print(matrix) 

Output 

[[10  0  0] 

 [ 0  1  9] 

 [ 0  0 10]] 

We can also use heatmap function to visualise a confusion matrix as follows: 

import seaborn as sns 

import matplotlib.pyplot as plt 

g = sns.heatmap(matrix,  

                annot=True,  

                xticklabels=label_encoder.classes_.tolist(),  

                yticklabels=label_encoder.classes_.tolist(),  

                cmap='Blues') 

g.set_yticklabels(g.get_yticklabels(), rotation=0) 

plt.show() 

 

 

We should also have a single performance number, that we can use to compare the 

model. For this, we need to calculate the classification error by using 
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classification_error function, from the metrics package in CNTK as done while creating 

classification model.  

Now to calculate the classification error, execute the test method on the loss function 

with a dataset. After that, CNTK will take the samples we provided as input for this 

function and make a prediction based on input features X_test.  

loss.test([X_test, y_test]) 

Output 

{'metric': 0.36666666666, 'samples': 30} 

Implementing F-Measures 

For implementing F-Measures, CNTK also includes function called fmeasures. We can 

use this function, while training the NN by replacing the cell 

cntk.metrics.classification_error, with a call to cntk.losses.fmeasure when defining 

the criterion factory function as follows: 

import cntk 

@cntk.Function 

def criterion_factory(output, target): 

       loss = cntk.losses.cross_entropy_with_softmax(output, target) 

  metric = cntk.losses.fmeasure(output, target) 

       return loss, metric 

After using cntk.losses.fmeasure function, we will get different output for the loss.test 

method call given as follows: 

loss.test([X_test, y_test]) 

Output 

{'metric': 0.83101488749, 'samples': 30} 
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Here, we will study about measuring performance with regards to a regression model. 

Basics of validating a regression model 

As we know that regression models are different than classification models, in the sense 

that, there is no binary measure of right or wrong for individuals’ samples. In regression 

models, we want to measure how close the prediction is to the actual value. The closer 

the prediction value is to the expected output, the better the model performs. 

Here, we are going to measure the performance of NN used for regression using 

different error-rate functions. 

Calculating error margin 

As discussed earlier, while validating a regression model, we can’t say whether a 

prediction is right or wrong. We want our prediction to be as close as possible to the real 

value. But, a small error margin is acceptable here. 

The formula for calculating the error margin is as follows: 

 

Here, 

Predicted value = indicated y by a hat 

Real value = predicted by y 

First, we need to calculate the distance between the predicted and the real value. Then, 

to get an overall error rate, we need to sum these squared distances and calculate the 

average. This is called the mean squared error function. 

But, if we want performance figures that express an error margin, we need a formula 

that expresses the absolute error. The formula for mean absolute error function is as 

follows: 

 

The above formula takes the absolute distance between the predicted and the real value. 

Using CNTK to measure regression performance 

Here, we will look at how to use the different metrics, we discussed in combination with 

CNTK. We will use a regression model, that predicts miles per gallon for cars using the 

steps given below. 

15. CNTK — Regression Model 
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 Implementation steps: 

Step 1: First, we need to import the required components from cntk package as 

follows: 

from cntk import default_option, input_variable 

from cntk.layers import Dense, Sequential 

from cntk.ops import relu 

Step 2: Next, we need to define a default activation function using the default_options 

functions. Then, create a new Sequential layer set and provide two Dense layers with 64 

neurons each. Then, we add an additional Dense layer (which will act as the output 

layer) to the Sequential layer set and give 1 neuron without an activation as follows: 

with default_options(activation=relu): 

     model = Sequential([Dense(64),Dense(64),Dense(1,activation=None)]) 

Step 3: Once the network has been created, we need to create an input feature. We 

need to make sure that, it has the same shape as the features that we are going to be 

using for training. 

features = input_variable(X.shape[1]) 

Step 4: Now, we need to create another input_variable with size 1. It will be used to 

store the expected value for NN. 

target = input_variable(1) 

     z = model(features) 

Now, we need to train the model and in order to do so, we are going to split the dataset 

and perform preprocessing using the following implementation steps: 

Step 5: First, import StandardScaler from sklearn.preprocessing to get the values 

between -1 and +1. This will help us against exploding gradient problems in the NN. 

from sklearn.preprocessing import StandardScalar 

Step 6: Next, import train_test_split from sklearn.model_selection as follows: 

from sklearn.model_selection import train_test_split 

Step 7: Drop the mpg column from the dataset by using the drop method. At last split 

the dataset into a training and validation set using the train_test_split function as 

follows: 

x = df_cars.drop(columns=[‘mpg’]).values.astype(np.float32) 

y=df_cars.iloc[: , 0].values.reshape(-1, 1).astype(np.float32) 

scaler = StandardScaler() 
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X = scaler.fit_transform(x) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) 

Step 8: Now, we need to create another input_variable with size 1. It will be used to 

store the expected value for NN. 

target = input_variable(1) 

     z = model(features) 

We have split as well as preprocessed the data, now we need to train the NN. As did in 

previous sections while creating regression model, we need to define a combination of a 

loss and metric function to train the model.  

     import cntk 

    def absolute_error(output, target): 

         return cntk.ops.reduce_mean(cntk.ops.abs(output – target)) 

  @ cntk.Function 

   def criterion_factory(output, target): 

           loss = squared_error(output, target) 

           metric = absolute_error(output, target) 

           return loss, metric 

Now, let’s have a look at how to use the trained model. For our model, we will use 

criterion_factory as the loss and metric combination.  

from cntk.losses import squared_error 

from cntk.learners import sgd 

from cntk.logging import ProgressPrinter 

progress_printer = ProgressPrinter(0) 

loss = criterion_factory (z, target) 

learner = sgd(z.parameters, 0.001) 

training_summary=loss.train((x_train,y_train),parameter_learners=[learner],call

backs=[progress_printer],minibatch_size=16,max_epochs=10) 

Complete implementation example 

from cntk import default_option, input_variable 

from cntk.layers import Dense, Sequential 

from cntk.ops import relu 

 

with default_options(activation=relu): 
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       model = Sequential([Dense(64),Dense(64),Dense(1,activation=None)]) 

features = input_variable(X.shape[1]) 

target = input_variable(1) 

z = model(features) 

from sklearn.preprocessing import StandardScalar 

 

from sklearn.model_selection import train_test_split 

x = df_cars.drop(columns=[‘mpg’]).values.astype(np.float32) 

y=df_cars.iloc[: , 0].values.reshape(-1, 1).astype(np.float32) 

scaler = StandardScaler() 

X = scaler.fit_transform(x) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) 

target = input_variable(1) 

z = model(features) 

import cntk 

def absolute_error(output, target): 

        return cntk.ops.reduce_mean(cntk.ops.abs(output – target)) 

@ cntk.Function 

def criterion_factory(output, target): 

loss = squared_error(output, target) 

metric = absolute_error(output, target) 

return loss, metric 

from cntk.losses import squared_error 

from cntk.learners import sgd 

from cntk.logging import ProgressPrinter 

progress_printer = ProgressPrinter(0) 

loss = criterion_factory (z, target) 

learner = sgd(z.parameters, 0.001) 

training_summary=loss.train((x_train,y_train),parameter_learners=[learner],call

backs=[progress_printer],minibatch_size=16,max_epochs=10) 

Output 

------------------------------------------------------------------- 

 average      since    average      since      examples 

    loss       last     metric       last 

 ------------------------------------------------------ 
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Learning rate per minibatch: 0.001 

 

     690        690           24.9       24.9         16 

     654        636           24.1       23.7         48 

 

[………]     

In order to validate our regression model, we need to make sure that, the model handles 

new data just as well as it does with the training data. For this, we need to invoke the 

test method on loss and metric combination with test data as follows:  

loss.test([X_test, y_test]) 

Output: 

{'metric': 1.89679785619, 'samples': 79} 
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In this chapter, how to measure performance of out-of-memory datasets will be 

explained. 

In previous sections, we have discussed about various methods to validate the 

performance of our NN, but the methods we have discussed, are ones that deals with the 

datasets that fit in the memory.  

Here, the question arises what about out-of-memory datasets, because in production 

scenario, we need a lot of data to train NN. In this section, we are going to discuss how 

to measure performance when working with minibatch sources and manual minibatch 

loop. 

Minibatch sources 

While working with out-of-memory dataset, i.e. minibatch sources, we need slightly 

different setup for loss, as well as metric, than the setup we used while working with 

small datasets i.e. in-memory datasets. First, we will see how to set up a way to feed 

data to the trainer of NN model. 

Following are the implementation steps: 

Step 1: First, from cntk.io module import the components for creating the minibatch 

source as follows: 

from cntk.io import StreamDef, StreamDefs, MinibatchSource, CTFDeserializer, 

INFINITY_REPEAT 

Step 2: Next, create a new function named say create_datasource. This function will 

have two parameters namely filename and limit, with a default value of 

INFINITELY_REPEAT. 

def create_datasource(filename, limit =INFINITELY_REPEAT)  

Step 3: Now, within the function, by using StreamDef class crate a stream definition 

for the labels that reads from the labels field that has three features. We also need to set 

is_sparse to False as follows: 

labels_stream = StreamDef(field=’labels’, shape=3, is_sparse=False)  

Step 4: Next, create to read the features filed from the input file, create another 

instance of StreamDef as follows.  

feature_stream = StreamDef(field=’features’, shape=4, is_sparse=False)  

Step 5: Now, initialise the CTFDeserializer instance class. Specify the filename and 

streams that we need to deserialize as follows: 

16. CNTK — Out-of-Memory Datasets 
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deserializer = CTFDeserializer(filename, StreamDefs(labels=label_stream, 

features=features_stream)  

Step 6: Next, we need to create instance of minisourceBatch by using deserializer as 

follows: 

Minibatch_source = MinibatchSource(deserializer, randomize=True, 

max_sweeps=limit) 

return minibatch_source  

Step 7: At last, we need to provide training and testing source, which we created in 

previous sections also. We are using iris flower dataset. 

training_source = create_datasource(‘Iris_train.ctf’) 

test_source = create_datasource(‘Iris_test.ctf’, limit=1) 

Once you create MinibatchSource instance, we need to train it. We can use the same 

training logic, as used when we worked with small in-memory datasets. Here, we will 

use MinibatchSource instance, as the input for the train method on loss function as 

follows: 

Following are the implementation steps: 

Step 1: In order to log the output of the training session, first import the 

ProgressPrinter from cntk.logging module as follows: 

from cntk.logging import ProgressPrinter 

Step 2: Next, to set up the training session, import the trainer and training_session 

from cntk.train module as follows: 

from cntk.train import Trainer, training_session 

Step 3: Now, we need to define some set of constants like minibatch_size, 

samples_per_epoch and num_epochs as follows: 

minbatch_size = 16 

samples_per_epoch = 150 

num_epochs = 30  

max_samples = samples_per_epoch * num_epochs 

Step 4: Next, in order to know how to read data during training in CNTK, we need to 

define a mapping between the input variable for the network and the streams in the 

minibatch source. 

input_map = { 

 

 

  features: training_source.streams.features, 
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  labels: training_source.streams.labels 

 } 

Step 5: Next to log the output of the training process, initialize the progress_printer 

variable with a new ProgressPrinter instance. Also, initialize the trainer and provide it 

with the model as follows: 

progress_writer = ProgressPrinter(0) 

trainer: training_source.streams.labels 

Step 6: At last, to start the training process, we need to invoke the training_session 

function as follows: 

session = training_session(trainer,  

mb_source=training_source, 

mb_size=minibatch_size, 

model_inputs_to_streams=input_map, 

max_samples=max_samples, 

test_config=test_config) 

              session.train() 

Once we trained the model, we can add validation to this setup by using a TestConfig 

object and assign it to the test_config keyword argument of the train_session 

function.  

Following are the implementation steps: 

Step 1: First, we need to import the TestConfig class from the module cntk.train as 

follows: 

from cntk.train import TestConfig 

Step 2: Now, we need to create a new instance of the TestConfig with the 

test_source as input:  

Test_config = TestConfig(test_source) 

Complete Example 

from cntk.io import StreamDef, StreamDefs, MinibatchSource, CTFDeserializer, 

INFINITY_REPEAT 

def create_datasource(filename, limit =INFINITELY_REPEAT)  

labels_stream = StreamDef(field=’labels’, shape=3, is_sparse=False)  

 

 

feature_stream = StreamDef(field=’features’, shape=4, is_sparse=False)  
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deserializer = CTFDeserializer(filename, StreamDefs(labels=label_stream, 

features=features_stream)  

Minibatch_source = MinibatchSource(deserializer, randomize=True, 

max_sweeps=limit) 

return minibatch_source  

training_source = create_datasource(‘Iris_train.ctf’) 

test_source = create_datasource(‘Iris_test.ctf’, limit=1) 

from cntk.logging import ProgressPrinter 

from cntk.train import Trainer, training_session 

minbatch_size = 16 

samples_per_epoch = 150 

num_epochs = 30  

max_samples = samples_per_epoch * num_epochs 

input_map = { 

 features: training_source.streams.features, 

 labels: training_source.streams.labels 

 } 

 

progress_writer = ProgressPrinter(0) 

trainer: training_source.streams.labels 

session = training_session(trainer,  

mb_source=training_source, 

mb_size=minibatch_size, 

model_inputs_to_streams=input_map, 

max_samples=max_samples, 

test_config=test_config) 

session.train() 

from cntk.train import TestConfig 

Test_config = TestConfig(test_source) 

Output 

------------------------------------------------------------------- 

 average      since    average      since      examples 

    loss       last     metric       last 

 ------------------------------------------------------ 
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Learning rate per minibatch: 0.1 

     1.57       1.57          0.214      0.214        16 

     1.38       1.28          0.264      0.289        48 

[………]     

Finished Evaluation [1]: Minibatch[1-1]:metric = 69.65*30; 

Manual minibatch loop 

As we see above, it is easy to measure the performance of our NN model during and 

after training, by using the metrics when training with regular APIs in CNTK. But, on the 

other side, things will not be that easy while working with a manual minibatch loop. 

Here, we are using the model given below with 4 inputs and 3 outputs from Iris Flower 

dataset, created in previous sections too:  

from cntk import default_options, input_variable 

from cntk.layers import Dense, Sequential 

from cntk.ops import log_softmax, relu, sigmoid 

from cntk.learners import sgd  

model = Sequential([ 

    Dense(4, activation=sigmoid), 

    Dense(3, activation=log_softmax) 

]) 

features = input_variable(4) 

labels = input_variable(3) 

z = model(features) 

Next, the loss for the model is defined as the combination of the cross-entropy loss 

function, and the F-measure metric as used in previous sections. We are going to use 

the criterion_factory utility, to create this as a CNTK function object as shown below: 

import cntk 

from cntk.losses import cross_entropy_with_softmax, fmeasure 

@cntk.Function 

def criterion_factory(outputs, targets): 

    loss = cross_entropy_with_softmax(outputs, targets) 

    metric = fmeasure(outputs, targets, beta=1)  

    return loss, metric 

 

loss = criterion_factory(z, labels) 

learner = sgd(z.parameters, 0.1) 
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label_mapping = { 

 

    'Iris-setosa': 0, 

    'Iris-versicolor': 1, 

    'Iris-virginica': 2 

} 

Now, as we have defined the loss function, we will see how we can use it in the trainer, 

to set up a manual training session. 

Following are the implementation steps: 

Step 1: First, we need to import the required packages like numpy and pandas to load 

and preprocess the data. 

import pandas as pd 

import numpy as np 

Step 2: Next, in order to log information during training, import the ProgressPrinter 

class as follows: 

from cntk.logging import ProgressPrinter 

Step 3: Then, we need to import the trainer module from cntk.train module as follows: 

from cntk.train import Trainer 

Step 4: Next, create a new instance of ProgressPrinter as follows:  

progress_writer = ProgressPrinter(0) 

Step 5: Now, we need to initialise trainer with the parameters the loss, the learner and 

the progress_writer as follows: 

trainer = Trainer(z, loss, learner, progress_writer) 

Step 6: Next, in order to train the model, we will create a loop that will iterate over the 

dataset thirty times. This will be the outer training loop. 

for _ in range(0,30): 

Step 7: Now, we need to load the data from disk using pandas. Then, in order to load 

the dataset in mini-batches, set the chunksize keyword argument to 16. 

input_data = pd.read_csv('iris.csv',  

        names=['sepal_length', 'sepal_width','petal_length','petal_width', 

'species'],  

        index_col=False, chunksize=16) 
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Step 8: Now, create an inner training for loop to iterate over each of the mini-batches. 

 for df_batch in input_data: 

Step 9: Now inside this loop, read the first four columns using the iloc indexer, as the 

features to train from and convert them to float32: 

feature_values = df_batch.iloc[:,:4].values 

feature_values = feature_values.astype(np.float32) 

Step 10: Now, read the last column as the labels to train from, as follows: 

label_values = df_batch.iloc[:,-1] 

Step 11: Next, we will use one-hot vectors to convert the label strings to their numeric 

presentation as follows: 

label_values = label_values.map(lambda x: label_mapping[x]) 

Step 12: After that, take the numeric presentation of the labels. Next, convert them to a 

numpy array, so it is easier to work with them as follows: 

    label_values = label_values.values 

Step 13: Now, we need to create a new numpy array that has the same number of rows 

as the label values that we have converted.  

encoded_labels = np.zeros((label_values.shape[0], 3)) 

Step 14: Now, in order to create one-hot encoded labels, select the columns based on 

the numeric label values. 

encoded_labels[np.arange(label_values.shape[0]), label_values] = 1. 

Step 15: At last, we need to invoke the train_minibatch method on the trainer and 

provide the processed features and labels for the minibatch.  

trainer.train_minibatch({features: feature_values, labels: encoded_labels}) 

Complete Example 

from cntk import default_options, input_variable 

from cntk.layers import Dense, Sequential 

from cntk.ops import log_softmax, relu, sigmoid 

 

from cntk.learners import sgd  

model = Sequential([ 

    Dense(4, activation=sigmoid), 
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    Dense(3, activation=log_softmax) 

]) 

features = input_variable(4) 

labels = input_variable(3) 

z = model(features) 

import cntk 

from cntk.losses import cross_entropy_with_softmax, fmeasure 

@cntk.Function 

def criterion_factory(outputs, targets): 

    loss = cross_entropy_with_softmax(outputs, targets) 

    metric = fmeasure(outputs, targets, beta=1)  

    return loss, metric 

loss = criterion_factory(z, labels) 

learner = sgd(z.parameters, 0.1) 

label_mapping = { 

    'Iris-setosa': 0, 

    'Iris-versicolor': 1, 

    'Iris-virginica': 2 

} 

 

import pandas as pd 

import numpy as np 

from cntk.logging import ProgressPrinter 

from cntk.train import Trainer 

progress_writer = ProgressPrinter(0) 

trainer = Trainer(z, loss, learner, progress_writer) 

for _ in range(0,30): 

                  input_data = pd.read_csv('iris.csv',  

        names=['sepal_length', 'sepal_width','petal_length','petal_width', 

'species'],  

        index_col=False, chunksize=16) 

 for df_batch in input_data: 

 

                         feature_values = df_batch.iloc[:,:4].values 

                         feature_values = feature_values.astype(np.float32) 

                         label_values = df_batch.iloc[:,-1] 
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                        label_values = label_values.map(lambda x: 

label_mapping[x]) 

                        label_values = label_values.values 

                        encoded_labels = np.zeros((label_values.shape[0], 3)) 

                        encoded_labels[np.arange(label_values.shape[0]), 

label_values] = 1. 

                        trainer.train_minibatch({features: feature_values, 

labels: encoded_labels}) 

Output 

------------------------------------------------------------------- 

 average      since    average      since      examples 

    loss       last     metric       last 

 ------------------------------------------------------ 

Learning rate per minibatch: 0.1 

     1.45       1.45          -0.189     -0.189       16 

     1.24       1.13          -0.0382     0.0371      48 

[………]     

 

In the above output, we got both the output for the loss and the metric during training. 

It is because we combined a metric and loss in a function object and used a progress 

printer in the trainer configuration.  

Now, in order to evaluate the model performance, we need to perform same task as with 

training the model, but this time, we need to use an Evaluator instance to test the 

model. It is shown in the following Python code: 

from cntk import Evaluator 

evaluator = Evaluator(loss.outputs[1], [progress_writer]) 

input_data = pd.read_csv('iris.csv',  

        names=['sepal_length', 'sepal_width','petal_length','petal_width', 

'species'],  

        index_col=False, chunksize=16) 

for df_batch in input_data: 

    feature_values = df_batch.iloc[:,:4].values 

 

    feature_values = feature_values.astype(np.float32) 

    label_values = df_batch.iloc[:,-1] 

    

    label_values = label_values.map(lambda x: label_mapping[x]) 
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    label_values = label_values.values   

    encoded_labels = np.zeros((label_values.shape[0], 3)) 

    encoded_labels[np.arange(label_values.shape[0]), label_values] = 1. 

    evaluator.test_minibatch({ features: feature_values, labels:  

encoded_labels}) 

evaluator.summarize_test_progress() 

Now, we will get the output something like the following: 

Output 

Finished Evaluation [1]: Minibatch[1-11]:metric = 74.62*143; 
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In this chapter, we will understand how to monitor a model in CNTK. 

Introduction 

In previous sections, we have done some validation on our NN models. But, is it also 

necessary and possible to monitor our model during training?  

Yes, already we have used ProgressWriter class to monitor our model and there are 

many more ways to do so. Before getting deep into the ways, first let’s have a look how 

monitoring in CNTK works and how we can use it to detect problems in our NN model. 

Callbacks in CNTK 

Actually, during training and validation, CNTK allows us to specify callbacks in several 

spots in the API. First, let’s take a closer look at when CNTK invokes callbacks. 

When CNTK invoke callbacks? 

CNTK will invoke the callbacks at the training and testing set moments when: 

 A minibatch is completed. 

 A full sweep over the dataset is completed during training. 

 A minibatch of testing is completed. 

 A full sweep over the dataset is completed during testing. 

Specifying callbacks 

While working with CNTK, we can specify callbacks in several spots in the API. For 

example: 

When call train on a loss function? 

Here, when we call train on a loss function, we can specify a set of callbacks through the 

callbacks argument as follows: 

training_summary=loss.train((x_train,y_train), 

parameter_learners=[learner], 

callbacks=[progress_writer]), 

minibatch_size=16, max_epochs=15) 

When working with minibatch sources or using a manual minibatch loop: 

In this case, we can specify callbacks for monitoring purpose while creating the Trainer 

as follows: 

from cntk.logging import ProgressPrinter 

17. CNTK — Monitoring the Model 
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callbacks = [ 

        ProgressPrinter(0) 

] 

 

Trainer = Trainer(z, (loss, metric), learner, [callbacks]) 

Various monitoring tools 

Let us study about different monitoring tools. 

ProgressPrinter  

While reading this tutorial, you will find ProgressPrinter as the most used monitoring 

tool. Some of the characteristics of ProgressPrinter monitoring tool are: 

ProgressPrinter class implements basic console-based logging to monitor our model. It 

can log to disk we want it to. 

Especially useful while working in a distributed training scenario. 

It is also very useful while working in a scenario where we can’t log in on the console to 

see the output of our Python program. 

With the help of following code, we can create an instance of ProgressPrinter: 

ProgressPrinter(0, log_to_file=’test.txt’) 

We will get the output something that we have seen in the earlier sections: 

Test.txt 

CNTKCommandTrainInfo: train : 300 

CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 300 

CNTKCommandTrainBegin: train  

------------------------------------------------------------------- 

 average      since    average      since      examples 

    loss       last     metric       last 

 ------------------------------------------------------ 

Learning rate per minibatch: 0.1 

     1.45       1.45          -0.189     -0.189       16 

     1.24       1.13          -0.0382     0.0371      48 

[………]     
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TensorBoard  

One of the disadvantages of using ProgressPrinter is that, we can’t get a good view of 

how the loss and metric progress over time is hard. TensorBoardProgressWriter is a 

great alternative to the ProgressPrinter class in CNTK. 

Before using it, we need to first install it with the help of following command: 

pip install tensorboard 

Now, in order to use TensorBoard, we need to set up TensorBoardProgressWriter in 

our training code as follows: 

import time 

from cntk.logging import TensorBoardProgressWriter 

tensorbrd_writer = 

TensorBoardProgressWriter(log_dir=’logs/{}’.format(time.time()),freq=1,model=z) 

It is a good practice to call the close method on TensorBoardProgressWriter instance 

after done with the training of NN model.  

We can visualise the TensorBoard logging data with the help of following command: 

Tensorboard –logdir logs 
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In this chapter, let us study how to construct a Convolutional Neural Network (CNN) in 

CNTK. 

Introduction 

Convolutional neural networks (CNNs) are also made up of neurons, that have learnable 

weights and biases. That’s why in this manner, they are like ordinary neural networks 

(NNs).  

If we recall the working of ordinary NNs, every neuron receives one or more inputs, 

takes a weighted sum and it passed through an activation function to produce the final 

output.  Here, the question arises that if CNNs and ordinary NNs have so many 

similarities then what makes these two networks different to each other? 

What makes them different is the treatment of input data and types of layers? The 

structure of input data is ignored in ordinary NN and all the data is converted into 1-D 

array before feeding it into the network.  

But, Convolutional Neural Network architecture can consider the 2D structure of the 

images, process them and allow it to extract the properties that are specific to images. 

Moreover, CNNs have the advantage of having one or more Convolutional layers and 

pooling layer, which are the main building blocks of CNNs.  

These layers are followed by one or more fully connected layers as in standard multilayer 

NNs. So, we can think of CNN, as a special case of fully connected networks.  

Convolutional Neural Network (CNN) architecture 

The architecture of CNN is basically a list of layers that transforms the 3-dimensional, 

i.e. width, height and depth of image volume into a 3-dimensional output volume. One 

important point to note here is that, every neuron in the current layer is connected to a 

small patch of the output from the previous layer, which is like overlaying a  filter 

on the input image.  

It uses M filters, which are basically feature extractors that extract features like edges, 

corner and so on. Following are the layers [INPUT-CONV-RELU-POOL-FC] that are 

used to construct Convolutional neural networks (CNNs): 

 INPUT: As the name implies, this layer holds the raw pixel values. Raw pixel 

values mean the data of the image as it is. Example, INPUT [64×64×3] is a 3-

channeled RGB image of width-64, height-64 and depth-3.  

 CONV: This layer is one of the building blocks of CNNs as most of the 

computation is done in this layer. Example - if we use 6 filters on the above 

mentioned INPUT [64×64×3], this may result in the volume [64×64×6]. 

 

18. CNTK — Convolutional Neural Network  
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 RELU: Also called rectified linear unit layer, that applies an activation function to 

the output of previous layer. In other manner, a non-linearity would be added to 

the network by RELU.  

 POOL: This layer, i.e. Pooling layer is one other building block of CNNs. The main 

task of this layer is down-sampling, which means it operates independently on 

every slice of the input and resizes it spatially. 

 FC: It is called Fully Connected layer or more specifically the output layer. It is 

used to compute output class score and the resulting output is volume of the size 

  where L is the number corresponding to class score.    

The diagram below represents the typical architecture of CNNs: 

 
 

Creating CNN structure  

We have seen the architecture and the basics of CNN, now we are going to building 

convolutional network using CNTK. Here, we will first see how to put together the 

structure of the CNN and then we will look at how to train the parameters of it.  

At last we’ll see, how we can improve the neural network by changing its structure with 

various different layer setups. We are going to use MNIST image dataset. 

So, first let’s create a CNN structure. Generally, when we build a CNN for recognizing 

patterns in images, we do the following: 

 We use a combination of convolution and pooling layers. 

 One or more hidden layer at the end of the network. 

 At last, we finish the network with a softmax layer for classification purpose. 

With the help of following steps, we can build the network structure: 

FC 

layers 

IMAGE 

 

 

 

 
 

INPU

T 

Convolution + Nonlinearity 

(RELU) 

Pooling 

Bird 

Cat 

Home 

Lion 

Dog 

Classificati

on 

Architecture of CNNs 



Microsoft Cognitive Toolkit (CNTK)       

   103 

 

Step 1: First, we need to import the required layers for CNN. 

from cntk.layers import Convolution2D, Sequential, Dense, MaxPooling 

Step 2: Next, we need to import the activation functions for CNN. 

from cntk.ops import log_softmax, relu 

Step 3: After that in order to initialize the convolutional layers later, we need to import 

the glorot_uniform_initializer as follows: 

from cntk.initializer import glorot_uniform 

Step 4: Next, to create input variables import the input_variable function. And import 

default_option function, to make configuration of NN a bit easier.  

from cntk import input_variable, default_options 

Step 5: Now to store the input images, create a new input_variable. It will contain 

three channels namely red, green and blue. It would have the size of 28 by 28 pixels. 

features = input_variable((3,28,28)) 

Step 6: Next, we need to create another input_variable to store the labels to predict. 

labels = input_variable(10)  

Step 7: Now, we need to create the default_option for the NN. And, we need to use 

the glorot_uniform as the initialization function. 

with default_options(initialization=glorot_uniform, activation=relu): 

Step 8: Next, in order to set the structure of the NN, we need to create a new 

Sequential layer set. 

Step 9: Now we need to add a Convolutional2D layer with a filter_shape of 5 and a 

strides setting of 1, within the Sequential layer set. Also, enable padding, so that the 

image is padded to retain the original dimensions. 

model = Sequential([ 

        Convolution2D(filter_shape=(5,5), strides=(1,1), num_filters=8, 

pad=True), 

Step 10: Now it’s time to add a MaxPooling layer with filter_shape of 2, and a 

strides setting of 2 to compress the image by half. 

MaxPooling(filter_shape=(2,2), strides=(2,2)), 

Step 11: Now, as we did in step 9, we need to add another Convolutional2D layer with 

a filter_shape of 5 and a strides setting of 1, use 16 filters. Also, enable padding, so 

that, the size of the image produced by the previous pooling layer should be retained. 
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Convolution2D(filter_shape=(5,5), strides=(1,1), num_filters=16, pad=True), 

Step 12: Now, as we did in step 10, add another MaxPooling layer with a filter_shape 

of 3 and a strides setting of 3 to reduce the image to a third. 

    MaxPooling(filter_shape=(3,3), strides=(3,3)), 

Step 13: At last, add a Dense layer with ten neurons for the 10 possible classes, the 

network can predict. In order to turn the network into a classification model, use a 

log_siftmax activation function.  

Dense(10, activation=log_softmax) 

    ]) 

Complete Example for creating CNN structure 

from cntk.layers import Convolution2D, Sequential, Dense, MaxPooling 

from cntk.ops import log_softmax, relu 

from cntk.initializer import glorot_uniform 

from cntk import input_variable, default_options 

features = input_variable((3,28,28)) 

labels = input_variable(10) 

with default_options(initialization=glorot_uniform, activation=relu): 

model = Sequential([ 

        Convolution2D(filter_shape=(5,5), strides=(1,1), num_filters=8, 

pad=True), 

MaxPooling(filter_shape=(2,2), strides=(2,2)), 

        Convolution2D(filter_shape=(5,5), strides=(1,1), num_filters=16, 

pad=True), 

MaxPooling(filter_shape=(3,3), strides=(3,3)), 

Dense(10, activation=log_softmax) 

    ]) 

z = model(features) 

Training CNN with images  

As we have created the structure of the network, it’s time to train the network. But 

before starting the training of our network, we need to set up minibatch sources, 

because training a NN that works with images requires more memory, than most 

computers have. 

We have already created minibatch sources in previous sections. Following is the Python 

code to set up two minibatch sources: 
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As we have the create_datasource function, we can now create two separate data 

sources (training and testing one) to train the model. 

train_datasource = create_datasource('mnist_train') 

test_datasource = create_datasource('mnist_test', max_sweeps=1, train=False) 

Now, as we have prepared the images, we can start training of our NN. As we did in 

previous sections, we can use the train method on the loss function to kick off the 

training. Following is the code for this: 

from cntk import Function 

from cntk.losses import cross_entropy_with_softmax 

from cntk.metrics import classification_error 

from cntk.learners import sgd 

@Function 

def criterion_factory(output, targets): 

    loss = cross_entropy_with_softmax(output, targets) 

    metric = classification_error(output, targets)  

    return loss, metric 

loss = criterion_factory(z, labels) 

learner = sgd(z.parameters, lr=0.2) 

With the help of previous code, we have setup the loss and learner for the NN. The 

following code will train and validate the NN: 

from cntk.logging import ProgressPrinter 

from cntk.train import TestConfig 

progress_writer = ProgressPrinter(0) 

test_config = TestConfig(test_datasource) 

input_map = { 

    features: train_datasource.streams.features, 

    labels: train_datasource.streams.labels 

} 

loss.train(train_datasource,  

           max_epochs=10, 

           minibatch_size=64, 

           epoch_size=60000,  

             parameter_learners=[learner],  

           model_inputs_to_streams=input_map,   

           callbacks=[progress_writer, test_config]) 
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Complete Implementation Example 

from cntk.layers import Convolution2D, Sequential, Dense, MaxPooling 

from cntk.ops import log_softmax, relu 

from cntk.initializer import glorot_uniform 

from cntk import input_variable, default_options 

features = input_variable((3,28,28)) 

labels = input_variable(10) 

with default_options(initialization=glorot_uniform, activation=relu): 

model = Sequential([ 

        Convolution2D(filter_shape=(5,5), strides=(1,1), num_filters=8, 

pad=True), 

MaxPooling(filter_shape=(2,2), strides=(2,2)), 

        Convolution2D(filter_shape=(5,5), strides=(1,1), num_filters=16, 

pad=True), 

MaxPooling(filter_shape=(3,3), strides=(3,3)), 

Dense(10, activation=log_softmax) 

    ]) 

z = model(features) 

import os 

from cntk.io import MinibatchSource, StreamDef, StreamDefs, ImageDeserializer, 

INFINITELY_REPEAT 

import cntk.io.transforms as xforms 

def create_datasource(folder, train=True, max_sweeps=INFINITELY_REPEAT): 

    mapping_file = os.path.join(folder, 'mapping.bin') 

    image_transforms = [] 

    if train: 

      image_transforms += [ 

            xforms.crop(crop_type='randomside', side_ratio=0.8), 

            xforms.scale(width=28, height=28, channels=3, 

interpolations='linear') 

        ] 

         

    stream_definitions = StreamDefs( 

     features=StreamDef(field='image', transforms=image_transforms), 

        labels=StreamDef(field='label', shape=10) 

    ) 
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    deserializer = ImageDeserializer(mapping_file, stream_definitions) 

    return MinibatchSource(deserializer, max_sweeps=max_sweeps) 

train_datasource = create_datasource('mnist_train') 

test_datasource = create_datasource('mnist_test', max_sweeps=1, train=False) 

from cntk import Function 

from cntk.losses import cross_entropy_with_softmax 

from cntk.metrics import classification_error 

from cntk.learners import sgd 

@Function 

def criterion_factory(output, targets): 

    loss = cross_entropy_with_softmax(output, targets) 

    metric = classification_error(output, targets)  

    return loss, metric 

loss = criterion_factory(z, labels) 

learner = sgd(z.parameters, lr=0.2) 

from cntk.logging import ProgressPrinter 

from cntk.train import TestConfig 

progress_writer = ProgressPrinter(0) 

test_config = TestConfig(test_datasource) 

input_map = { 

    features: train_datasource.streams.features, 

    labels: train_datasource.streams.labels 

} 

loss.train(train_datasource,  

           max_epochs=10, 

           minibatch_size=64, 

           epoch_size=60000,  

                         parameter_learners=[learner],  

           model_inputs_to_streams=input_map,   

           callbacks=[progress_writer, test_config]) 

Output 

------------------------------------------------------------------- 

 average      since    average      since      examples 
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    loss       last     metric       last               

 ------------------------------------------------------ 

Learning rate per minibatch: 0.2 

      142        142      0.922      0.922            64 

 1.35e+06   1.51e+07      0.896      0.883           192 

[………]     

 

Image transformations  

As we have seen, it’s difficult to train NN used for image recognition and, they require a 

lot of data to train also. One more issue is that, they tend to overfit on images used 

during training. Let us see with an example, when we have photos of faces in an upright 

position, our model will have a hard time recognizing faces that are rotated in another 

direction.  

In order to overcome such problem, we can use image augmentation and CNTK supports 

specific transforms, when creating minibatch sources for images. We can use several 

transformations as follows: 

 We can randomly crop images used for training with just a few lines of code. 

 We can use a scale and color also. 

Let’s see with the help of following Python code, how we can change the list of 

transformations by including a cropping transformation within the function used to create 

the minibatch source earlier. 

import os 

from cntk.io import MinibatchSource, StreamDef, StreamDefs, ImageDeserializer, 

INFINITELY_REPEAT 

import cntk.io.transforms as xforms 

def create_datasource(folder, train=True, max_sweeps=INFINITELY_REPEAT): 

    mapping_file = os.path.join(folder, 'mapping.bin') 

    image_transforms = [] 

    if train: 

      image_transforms += [ 

            xforms.crop(crop_type='randomside', side_ratio=0.8), 

            xforms.scale(width=28, height=28, channels=3, 

interpolations='linear') 

        ] 

         

    stream_definitions = StreamDefs( 
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     features=StreamDef(field='image', transforms=image_transforms), 

        labels=StreamDef(field='label', shape=10) 

    ) 

     

    deserializer = ImageDeserializer(mapping_file, stream_definitions) 

    return MinibatchSource(deserializer, max_sweeps=max_sweeps) 

With the help of above code, we can enhance the function to include a set of image 

transforms, so that, when we will be training we can randomly crop the image, so we get 

more variations of the image.  
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Now, let us understand how to construct a Recurrent Neural Network (RNN) in CNTK. 

Introduction 

We learned how to classify images with a neural network, and it is one of the iconic jobs 

in deep learning. But, another area where neural network excels at and lot of research 

happening is Recurrent Neural Networks (RNN). Here, we are going to know what RNN is 

and how it can be used in scenarios where we need to deal with time-series data. 

What is Recurrent Neural Network? 

Recurrent neural networks (RNNs) may be defined as the special breed of NNs that are 

capable of reasoning over time. RNNs are mainly used in scenarios, where we need to 

deal with values that change over time, i.e. time-series data. In order to understand it in 

a better way, let’s have a small comparison between regular neural networks and 

recurrent neural networks: 

 As we know that, in a regular neural network, we can provide only one input. This 

limits it to results in only one prediction. To give you an example, we can do 

translating text job by using regular neural networks. 

 On the other hand, in recurrent neural networks, we can provide a sequence of 

samples that result in a single prediction. In other words, using RNNs we can 

predict an output sequence based on an input sequence. For example, there have 

been quite a few successful experiments with RNN in translation tasks. 

Uses of Recurrent Neural Network 

RNNs can be used in several ways. Some of them are as follows: 

Predicting a single output 

Before getting deep dive into the steps, that how RNN can predict a single output based 

on a sequence, let’s see how a basic RNN looks like: 

 

19. CNTK — Recurrent Neural Network  
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As we can in the above diagram, RNN contains a loopback connection to the input and 

whenever, we feed a sequence of values it will process each element in the sequence as 

time steps.  

Moreover, because of the loopback connection, RNN can combine the generated output 

with input for the next element in the sequence. In this way, RNN will build a memory 

over the whole sequence which can be used to make a prediction.  

In order to make prediction with RNN, we can perform the following steps: 

 First, to create an initial hidden state, we need to feed the first element of the 

input sequence. 

 After that, to produce an updated hidden state, we need to take the initial hidden 

state and combine it with the second element in the input sequence. 

 At last, to produce the final hidden state and to predict the output for the RNN, 

we need to take the final element in the input sequence. 

In this way, with the help of this loopback connection we can teach a RNN to recognize 

patterns that happen over time.  

 Predicting a sequence 

The basic model, discussed above, of RNN can be extended to other use cases as well. 

For example, we can use it to predict a sequence of values based on a single input. In 

this scenario, order to make prediction with RNN we can perform the following steps: 

 First, to create an initial hidden state and predict the first element in the output 

sequence, we need to feed an input sample into the neural network. 

 After that, to produce an updated hidden state and the second element in the 

output sequence, we need to combine the initial hidden state with the same 

sample. 
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 At last, to update the hidden state one more time and predict the final element in 

output sequence, we feed the sample another time. 

Predicting sequences 

As we have seen how to predict a single value based on a sequence and how to predict a 

sequence based on a single value. Now let’s see how we can predict sequences for 

sequences. In this scenario, order to make prediction with RNN we can perform the 

following steps: 

 First, to create an initial hidden state and predict the first element in the output 

sequence, we need to take the first element in the input sequence. 

 After that, to update the hidden state and predict the second element in the 

output sequence, we need to take the initial hidden state. 

 At last, to predict the final element in the output sequence, we need to take the 

updated hidden state and the final element in the input sequence. 

Working of RNN 

To understand the working of recurrent neural networks (RNNs) we need to first 

understand how recurrent layers in the network work. So first let’s discuss how e can 

predict the output with a standard recurrent layer. 

Predicting output with standard RNN layer 

As we discussed earlier also that a basic layer in RNN is quite different from a regular 

layer in a neural network. In previous section, we also demonstrated in the diagram the 

basic architecture of RNN. In order to update the hidden state for the first-time step-in 

sequence we can use the following formula: 

   

In the above equation, we calculate the new hidden state by calculating the dot product 

between the initial hidden state and a set of weights. 

Now for the next step, the hidden state for the current time step is used as the initial 

hidden state for the next time step in the sequence. That’s why, to update the hidden 

state for the second time step, we can repeat the calculations performed in the first-time 

step as follows: 

  

Next, we can repeat the process of updating the hidden state for the third and final step 

in the sequence as below: 

  

And when we have processed all the above steps in the sequence, we can calculate the 

output as follows: 
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For the above formula, we have used a third set of weights and the hidden state from 

the final time step. 

Advanced Recurrent Units 

The main issue with basic recurrent layer is of vanishing gradient problem and due to 

this it is not very good at learning long-term correlations. In simple words basic 

recurrent layer does not handle long sequences very well. That’s the reason some other 

recurrent layer types that are much more suited for working with longer sequences are 

as follows: 

Long-Short Term Memory (LSTM) 

        

Long-short term memory (LSTMs) networks were introduced by Hochreiter & 

Schmidhuber. It solved the problem of getting a basic recurrent layer to remember 

things for a long time. The architecture of LSTM is given above in the diagram. As we 

can see it has input neurons, memory cells, and output neurons. In order to combat the 

vanishing gradient problem, Long-short term memory networks use an explicit memory 

cell (stores the previous values) and the following gates: 

 Forget gate: As name implies, it tells the memory cell to forget the previous 

values. The memory cell stores the values until the gate i.e. ‘forget gate’ tells it 

to forget them.  

 Input gate: As name implies, it adds new stuff to the cell. 

 Output gate: As name implies, output gate decides when to pass along the 

vectors from the cell to the next hidden state.  

Gated Recurrent Units (GRUs) 
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Gradient recurrent units (GRUs) is a slight variation of LSTMs network. It has one less 

gate and are wired slightly different than LSTMs. Its architecture is shown in the above 

diagram. It has input neurons, gated memory cells, and output neurons. Gated 

Recurrent Units network has the following two gates: 

 Update gate: It determines the following two things: 

 What amount of the information should be kept from the last state? 

 What amount of the information should be let in from the previous layer? 

 Reset gate: The functionality of reset gate is much like that of forget gate of 

LSTMs network. The only difference is that it is located slightly differently. 

In contrast to Long-short term memory network, Gated Recurrent Unit networks are 

slightly faster and easier to run.   

Creating RNN structure 

Before we can start, making prediction about the output from any of our data source, we 

need to first construct RNN and constructing RNN is quite same as we had build regular 

neural network in previous section. Following is the code to build one: 

from cntk.losses import squared_error 

from cntk.io import CTFDeserializer, MinibatchSource, INFINITELY_REPEAT, 

StreamDefs, StreamDef 

from cntk.learners import adam 

from cntk.logging import ProgressPrinter 

from cntk.train import TestConfig 

BATCH_SIZE = 14 * 10 

EPOCH_SIZE = 12434 

EPOCHS = 10 

Staking multiple layers 

We can also stack multiple recurrent layers in CNTK. For example, we can use the 

following combination of layers: 



Microsoft Cognitive Toolkit (CNTK)       

   115 

 

from cntk import sequence, default_options, input_variable 

from cntk.layers import Recurrence, LSTM, Dropout, Dense, Sequential, Fold 

features = sequence.input_variable(1) 

with default_options(initial_state = 0.1): 

    model = Sequential([ 

        Fold(LSTM(15)), 

        Dense(1) 

    ])(features) 

 target = input_variable(1, dynamic_axes=model.dynamic_axes) 

As we can see in the above code, we have the following two ways in which we can model 

RNN in CNTK: 

 First, if we only want the final output of a recurrent layer, we can use the Fold 

layer in combination with a recurrent layer, such as GRU, LSTM, or even 

RNNStep. 

 Second, as an alternative way, we can also use the Recurrence block. 

Training RNN with time series data 

Once we build the model, let’s see how we can train RNN in CNTK: 

from cntk import Function 

 

@Function 

def criterion_factory(z, t): 

    loss = squared_error(z, t) 

    metric = squared_error(z, t)     

    return loss, metric 

loss = criterion_factory(model, target) 

learner = adam(model.parameters, lr=0.005, momentum=0.9) 

Now to load the data into the training process, we must have to deserialize sequences 

from a set of CTF files. Following code have the create_datasource function, which is a 

useful utility function to create both the training and test datasource. 

    target_stream = StreamDef(field='target', shape=1, is_sparse=False) 

    features_stream = StreamDef(field='features', shape=1, is_sparse=False) 

    deserializer = CTFDeserializer(filename, 

StreamDefs(features=features_stream, target=target_stream)) 

    datasource = MinibatchSource(deserializer, randomize=True, 

max_sweeps=sweeps)     
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  return datasource 

 

train_datasource = create_datasource('Training data filename.ctf')#we need to 

provide the location of training file we created from our dataset. 

 

test_datasource = create_datasource('Test filename.ctf', sweeps=1) #we need to 

provide the location of testing file we created from our dataset. 

Now, as we have setup the data sources, model and the loss function, we can start the 

training process. It is quite similar as we did in previous sections with basic neural 

networks. 

progress_writer = ProgressPrinter(0) 

test_config = TestConfig(test_datasource) 

input_map = { 

    features: train_datasource.streams.features, 

    target: train_datasource.streams.target 

} 

history = loss.train( 

    train_datasource,  

    epoch_size=EPOCH_SIZE, 

    parameter_learners=[learner],  

    model_inputs_to_streams=input_map, 

    callbacks=[progress_writer, test_config], 

    minibatch_size=BATCH_SIZE, 

    max_epochs=EPOCHS) 

We will get the output similar as follows: 

Output: 

average      since    average      since      examples 

    loss       last     metric       last               

 ------------------------------------------------------ 

Learning rate per minibatch: 0.005 

      0.4        0.4        0.4        0.4            19 

      0.4        0.4        0.4        0.4            59 

    0.452      0.495      0.452      0.495           129 

[…] 
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Validating the model 

Actually redicting with a RNN is quite similar to making predictions with any other CNK 

model. The only difference is that, we need to provide sequences rather than single 

samples. 

Now, as our RNN is finally done with training, we can validate the model by testing it 

using a few samples sequence as follows: 

import pickle 

with open('test_samples.pkl', 'rb') as test_file: 

    test_samples = pickle.load(test_file) 

 

model(test_samples) * NORMALIZE 

Output: 

array([[ 8081.7905], 

       [16597.693 ], 

       [13335.17  ], 

       ..., 

       [11275.804 ], 

       [15621.697 ], 

       [16875.555 ]], dtype=float32) 

 

  

 


