
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy amax() Function
The NumPy amax() function returns the maximum value along a specified axis of an array. If no axis is specified, it computes the maximum of all elements in the array. Additionally, conditions can be applied to obtain the maximum value based on specific criteria.
The amax() function is an alias for the max() function in NumPy, which means that both functions perform the exact same operationthey compute the maximum value of an array or along a specified axis.
Syntax
Following is the syntax of the NumPy amax() function −
numpy.amax(a, axis=None, out=None, keepdims=False, initial=None, where=True)
Parameters
Following are the parameters of the NumPy amax() function −
- a: Input array. The array can be of any shape or data type.
- axis (optional): Axis along which to compute the maximum. If None, the maximum is computed over the flattened array.
- out (optional): Alternate output array to place the result. It must have the same shape as the expected output.
- keepdims (optional): If True, the reduced dimensions are retained as dimensions of size one in the output. Default is False.
- initial (optional): Initial value to start the comparison. If not provided, the default is the minimum possible value for the data type.
- where (optional): A Boolean array. If True, include the corresponding element in the computation; otherwise, ignore it.
Return Values
This function returns a scalar value or a NumPy array containing the maximum values along the specified axis.
Example
Following is a basic example of finding the maximum value in an array using the NumPy amax() function −
import numpy as np # input array array = np.array([3, 5, 1, 7, 9]) # finding the maximum value max_value = np.amax(array) print("Maximum Value:", max_value)
Output
Following is the output of the above code −
Maximum Value: 9
Example: Maximum Along an Axis
The amax() function can find the maximum values along a specified axis of a multi-dimensional array. In the following example, we compute the maximum values along rows and columns −
import numpy as np # 2D input array array = np.array([[3, 24, 5], [8, 45, 2], [7, 9, 19]]) # maximum along rows (axis=1) max_along_rows = np.amax(array, axis=1) print("Maximum along rows:", max_along_rows) # maximum along columns (axis=0) max_along_columns = np.amax(array, axis=0) print("Maximum along columns:", max_along_columns)
Output
Following is the output of the above code −
Maximum along rows: [24 45 19] Maximum along columns: [ 8 45 19]
Example: Maximum with 'keepdims'
The keepdims parameter retains the reduced dimension as a size-one dimension in the output. This means that when we pass a multi-dimensional array and set this parameter to True, the reduced dimension's size is kept as 1, preserving the original dimensionality of the array. In the following example, we have demonstrated its use −
import numpy as np # 2D input array array = np.array([[3, 7, 5], [8, 4, 2], [6, 10, 9]]) # maximum along columns with keepdims=True max_with_keepdims = np.amax(array, axis=0, keepdims=True) print("Maximum with keepdims:\n", max_with_keepdims)
Output
Following is the output of the above code −
Maximum with keepdims: [[ 8 10 9]]
Example: Maximum with Where Condition
The where parameter allows computation of the maximum value based on the condition. In the following example, we have computed the maximum element which is less than 8 −
import numpy as np # input array array = np.array([3, 5, 1, 7, 9]) max_without_condition = np.amax(array) print("Maximum without condition:", max_without_condition) # where condition (only include values less than 8) max_with_condition = np.amax(array, where=array < 8, initial=-1) print("Maximum with condition:", max_with_condition)
Output
Following is the output of the above code −
Maximum without condition: 9 Maximum with condition: 7
Example: Graphical Representation of 'amax()'
In the following example, we visualize the maximum value along rows and columns of a 2D array. To achieve this, we need to import the numpy and matplotlib.pyplot modules −
import numpy as np import matplotlib.pyplot as plt # 2D input array array = np.array([[3, 7, 5], [8, 4, 2], [6, 1, 9]]) # maximum along rows max_rows = np.amax(array, axis=1) # maximum along columns max_columns = np.amax(array, axis=0) plt.plot(range(len(max_rows)), max_rows, label="Maximum along rows") plt.plot(range(len(max_columns)), max_columns, label="Maximum along columns") plt.title("Visualization of amax() Results") plt.xlabel("Index") plt.ylabel("Maximum Value") plt.legend() plt.grid() plt.show()
Output
The plot visualizes the maximum values along rows and columns of the array −
