
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy amin() Function
The NumPy amin() function returns the minimum value of an array along a specified axis. If no axis is specified, it computes the minimum value across all elements in the array. Additionally, conditions can be applied to obtain the minimum value based on specific criteria.
Syntax
Following is the syntax of the NumPy amin() function −
numpy.amin(a, axis=None, out=None, keepdims=False, initial=None, where=True)
Parameters
Following are the parameters of the NumPy amin() function −
- a: Input array. The array can be of any shape or data type.
- axis (optional): Axis along which to compute the minimum. If None, the minimum is computed over the flattened array.
- out (optional): Alternate output array to place the result. It must have the same shape as the expected output.
- keepdims (optional): If True, the reduced dimensions are retained as dimensions of size one in the output. Default is False.
- initial (optional): Initial value to start the comparison. If not provided, the default is the maximum possible value for the data type.
- where (optional): A Boolean array. If True, include the corresponding element in the computation; otherwise, ignore it.
Return Values
This function returns a scalar value or a NumPy array containing the minimum values along the specified axis.
Example
Following is a basic example of finding the minimum value in an array using the NumPy amin() function −
import numpy as np # input array array = np.array([3, 5, 1, 7, 9]) # finding the minimum value min_value = np.amin(array) print("Minimum Value:", min_value)
Output
Following is the output of the above code −
Minimum Value: 1
Example: Minimum Along an Axis
The amin() function can find the minimum values along a specified axis of a multi-dimensional array. In the following example, we compute the minimum values along rows and columns −
import numpy as np # 2D input array array = np.array([[3, 7, 5], [8, 4, 2], [6, 1, 9]]) # minimum along rows (axis=1) min_along_rows = np.amin(array, axis=1) print("Minimum along rows:", min_along_rows) # minimum along columns (axis=0) min_along_columns = np.amin(array, axis=0) print("Minimum along columns:", min_along_columns)
Output
Following is the output of the above code −
Minimum along rows: [3 2 1] Minimum along columns: [3 1 2]
Example: Minimum with keepdims
The keepdims parameter retains the reduced dimension as a size-one dimension in the output. In this example, we demonstrate its use −
import numpy as np # 2D input array array = np.array([[3, 7, 5], [8, 4, 2], [6, 1, 9]]) # minimum along rows with keepdims=True min_with_keepdims = np.amin(array, axis=1, keepdims=True) print("Minimum with keepdims:\n", min_with_keepdims)
Output
Following is the output of the above code −
Minimum with keepdims: [[3] [2] [1]]
Example: Minimum with 'where' Condition
The where parameter allows computation of the minimum based on a condition. In the following example, we compute the minimum only for selected elements −
import numpy as np # input array array = np.array([3, 5, 1, 7, 9]) # where condition (only include values greater than 4) min_with_condition = np.amin(array, where=array > 4, initial=10) print("Minimum with condition:", min_with_condition)
Output
Following is the output of the above code −
Minimum with condition: 5
Example: Graphical Representation of 'amin()'
In the following example, we visualize the minimum value along rows and columns of a 2D array. To achieve this, we need to import the numpy and matplotlib.pyplot modules −
import numpy as np import matplotlib.pyplot as plt # 2D input array array = np.array([[3, 7, 5], [8, 4, 2], [6, 1, 9]]) # minimum along rows min_rows = np.amin(array, axis=1) # minimum along columns min_columns = np.amin(array, axis=0) plt.plot(range(len(min_rows)), min_rows, label="Minimum along rows") plt.plot(range(len(min_columns)), min_columns, label="Minimum along columns") plt.title("Visualization of amin() Results") plt.xlabel("Index") plt.ylabel("Minimum Value") plt.legend() plt.grid() plt.show()
Output
The plot visualizes the minimum values along rows and columns of the array −
