
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy bitwise_invert() Function
The NumPy bitwise_invert() function is used to perform a bitwise NOT operation which inverts all the bits of each element in the input array.
This function flips each bit of the binary representation of the integers which results in the bitwise complement.
For unsigned integers it effectively computes the maximum value for the bit width minus the current value and where as for signed integers it uses two's complement representation.
This function handles inputs of various integer types and returns an array of the same shape and type with inverted bits. It is equivalent to bitwise_not().
Syntax
Following is the syntax of Numpy bitwise_invert() function −
numpy.bitwise_invert(x)
Parameters
The Numpy bitwise_invert() function takes a single parameter namely, x that takes input array or value on which the bitwise inversion is to be performed. The input should be an integer type array such as int8, int16, int32, int64, uint8, uint16, uint32, uint64 etc minus;
Return value
This function returns array with the bitwise inversion applied to each element of the input array. The output array has the same shape and type as the input array.
Example 1
Following is the basic example of Numpy bitwise_invert() function in which this provides a clear view of how bitwise inversion operates on a simple array of integers −
import numpy as np # Create a basic integer array x = np.array([0, 1, 2, 3], dtype=np.uint8) # Apply bitwise NOT operation result = np.bitwise_invert(x) print(result)
Below is the output of bitwise_invert() function applied on the array −
[255 254 253 252]
Example 2
When working with integer arrays of different data types in NumPy, the behavior of bitwise operations, including inversion, can vary based on the integer type used. Here is the example of it −
import numpy as np # Define arrays with different data types array_uint8 = np.array([0, 1, 2, 255], dtype=np.uint8) array_uint16 = np.array([0, 1, 2, 65535], dtype=np.uint16) array_int8 = np.array([0, 1, -1, -2], dtype=np.int8) array_int16 = np.array([0, 1, -1, -2], dtype=np.int16) # Perform bitwise inversion result_uint8 = np.bitwise_invert(array_uint8) result_uint16 = np.bitwise_invert(array_uint16) result_int8 = np.bitwise_invert(array_int8) result_int16 = np.bitwise_invert(array_int16) print('Original uint8 array:', array_uint8) print('Inverted uint8 array:', result_uint8) print('\nOriginal uint16 array:', array_uint16) print('Inverted uint16 array:', result_uint16) print('\nOriginal int8 array:', array_int8) print('Inverted int8 array:', result_int8) print('\nOriginal int16 array:', array_int16) print('Inverted int16 array:', result_int16)
Following is the output for the above example −
Original uint8 array: [ 0 1 2 255] Inverted uint8 array: [255 254 253 0] Original uint16 array: [ 0 1 2 65535] Inverted uint16 array: [65535 65534 65533 0] Original int8 array: [ 0 1 -1 -2] Inverted int8 array: [-1 -2 0 1] Original int16 array: [ 0 1 -1 -2] Inverted int16 array: [-1 -2 0 1]
Note: In few versions bitwise_invert() function won't work, in such cases we can use bitwise_not() function to do the same operation.