
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy deg2rad() Function
The NumPy deg2rad() function converts angles from degrees to radians. Radians are a standard unit of angular measurement in mathematics and science, and the relationship between degrees and radians is given by −
radians = degrees ( / 180)
This function is particularly useful in trigonometric calculations where angles need to be in radians.
Syntax
Following is the syntax of the NumPy deg2rad() function −
numpy.deg2rad(x, out=None, where=True, casting='same_kind', order='K', dtype=None, subok=True)
Parameters
Following are the parameters of the NumPy deg2rad() function −
- x: Input array. The elements represent angles in degrees and can be a NumPy array, list, or scalar value.
- out (optional): Alternate output array to place the result. It must have the same shape as the expected output.
- where(optional): A Boolean array. If True, compute the result; otherwise, it leaves the corresponding output elements unchanged.
- dtype(optional): Specifies the data type of the result.
- casting(optional): It ensures equivalent type conversion occurs. For example, converting from float32 to float64 is allowed, but converting from float64 to int32 is not.
- subok(optional)- It determines whether to subclass the output array if the data type is changed or to return a base-class array
- order (optional): It specifys the memory layout of the array. If object is not an array, the newly created array will be in C order (row major) unless F is specified, in which case it will be in Fortran order (column major) −
- 'C': C-style row-major order.
- 'F': Fortran-style column-major order.
- 'A': 'F' if the input is Fortran contiguous, 'C' otherwise.
- 'K': This is the default value keep the order as close as possible to the input.
Return Values
This function returns a NumPy array with the angles in radians corresponding to the input angles in degrees.
Example
Following is a basic example to convert angles in degrees to radians using the NumPy deg2rad() function −
import numpy as np # input array angles_in_degrees = np.array([0, 90, 180, 270, 360]) # converting to radians angles_in_radians = np.deg2rad(angles_in_degrees) print("Radians:", angles_in_radians)
Output
Following is the output of the above code −
Radians: [0. 1.57079633 3.14159265 4.71238898 6.28318531]
Example: Scalar Input
The deg2rad() function also accepts a scalar input. In the following example, we have passed 180 as an argument to the deg2rad() function −
import numpy as np # scalar input degree = 180 # converting to radians radian = np.deg2rad(degree) print("Radian for Scalar Input:", radian)
Output
Following is the output of the above code −
Radian for Scalar Input: 3.141592653589793
Example: Multi-dimensional Array
The deg2rad() function operates on multi-dimensional arrays. In the following example, we have created a 2X2 NumPy array with angles in degrees and converted them to radians −
import numpy as np # 2D array of angles in degrees angles_in_degrees = np.array([[0, 90], [180, 270]]) # converting to radians angles_in_radians = np.deg2rad(angles_in_degrees) print("Radians for 2D Array:\n", angles_in_radians)
Output
Following is the output of the above code −
Radians for 2D Array: [[0. 1.57079633] [3.14159265 4.71238898]]
Example: Plotting Conversion
In the following example, we have plotted the linear relationship between degrees and radians. To achieve this, we need to import the numpy and matplotlib.pyplot modules −
import numpy as np import matplotlib.pyplot as plt degrees = np.linspace(0, 360, 100) # range of angles in degrees radians = np.deg2rad(degrees) # converting to radians plt.plot(degrees, radians) plt.title("Degrees to Radians Conversion") plt.xlabel("Degrees") plt.ylabel("Radians") plt.grid() plt.show()