
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy median() Function
The NumPy median() function computes the median of the input array along a specified axis. The median is the value separating the higher half from the lower half of the data. It is a measure of central tendency that is less sensitive to outliers compared to the mean.
In statistics, median is the middle value of the given list of data when arranged in an order. The arrangement of data or observations can be made either in ascending order or descending order. If the number of terms n is odd, then the median value is the n+1/2-th value. If n is an even number, the median is the average value of the two middle numbers, specifically the values at positions n/2 and n/2 + 1.
For a one-dimensional array, the median is the middle value when the data is sorted. For multi-dimensional arrays, the median is computed along the specified axis. If the data has an even number of elements, the median is the average of the two middle elements.
Syntax
Following is the syntax of the NumPy median() function −
numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)
Parameters
Following are the parameters of the NumPy median() function −
- a: Input array, it can be a NumPy array, list, or a scalar value.
- axis (optional): The axis along which to compute the median. Default is None, which means that the median is computed over the entire array.
- overwrite_input (optional): If True, the input array is modified in place. Default is False.
- out (optional): A location into which the result is stored. If provided, it must have the same shape as the expected output.
- keepdims (optional): If True, the reduced dimensions are retained as dimensions of size one in the output. Default is False.
Return Values
This function returns the median of the input array. The result is a scalar if the input is one-dimensional, and an array if the input is multi-dimensional.
Example
Following is a basic example to compute the median of an array using the NumPy median() function −
import numpy as np # input array x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) # applying median result = np.median(x) print("Median Result:", result)
Output
Following is the output of the above code −
Median Result: 5.0
Example: Specifying an Axis
The median() function can also compute the median along a specific axis of a multi-dimensional array. In the following example, we have computed the median along axis 0 (columns) and axis 1 (rows) of a 2D array.
import numpy as np # 2D array x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # applying median along axis 0 (columns) result_axis0 = np.median(x, axis=0) # applying median along axis 1 (rows) result_axis1 = np.median(x, axis=1) print("Median along axis 0:", result_axis0) print("Median along axis 1:", result_axis1)
Output
Following is the output of the above code −
Median along axis 0: [4. 5. 6.] Median along axis 1: [2. 5. 8.]
Example: Multi-dimensional Array
The median() function operates on multi-dimensional arrays. In the following example, we have created a 2D NumPy array and computed the median of each element along a specific axis −
import numpy as np # 2D array x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) result = np.median(x, axis=1) print("Median Result for 2D Array:", result)
Output
Following is the output of the above code −
Median Result for 2D Array: [2. 5. 8.]
Example: Usage of 'keepdims' Parameter
The keepdims parameter allows the result to retain the reduced dimensions as size one. This is useful for broadcasting the result back to the original shape. In the following example, we have computed the median along axis 0 and retain the reduced dimensions −
import numpy as np # 2D array x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) result = np.median(x, axis=0, keepdims=True) print("Median with keepdims=True:", result)
Output
Following is the output of the above code −
Median with keepdims=True: [[4. 5. 6.]]
Example: Plotting 'median()' Function
In the following example, we have plotted the behavior of the median() function. We have calculated and plotted the median for different sizes of input arrays by importing Numpy and matplotlib.pyplot module −
import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 10, 100) y = np.median(x) plt.plot(x, np.full_like(x, y), label="Median") plt.title("Median Function") plt.xlabel("Input") plt.ylabel("Median Value") plt.legend() plt.grid() plt.show()
Output
The plot demonstrates the constant nature of the median value across the input range −
