NumPy nanmin() Function



The NumPy nanmin() function computes the minimum value of an array, ignoring any NaN (Not a Number) values. If all values in the array or along the specified axis are NaN, it encountered a RuntimeWarning is raised and the result will be NaN.

When the positive infinity(inf) and negative infinity(-inf) is present in an array the nanmin() behaves similarly but ignores NaN values. However, it still considers -inf as the smallest possible value if present, as long as the array has no NaN elements that mask the calculation.

The nanmin() function returns a float data type when any element in the input array is a float, even if all values are integers. This ensures compatibility with arrays that may contain NaN, infinities, or fractional numbers. If the input array contains only integers and no NaN values, the return type matches the input's data type.

Following is the syntax of the NumPy nanmin() function −

numpy.nanmin(a, axis=None, out=None, keepdims=False, initial=None, where=True)  

Parameters

Following are the parameters of the NumPy nanmin() function −

  • a: Input array. The array can be of any shape or data type and may include NaN values.
  • axis (optional): Axis along which to compute the minimum. If None, the minimum is computed over the flattened array.
  • out (optional): Alternate output array to place the result. It must have the same shape as the expected output.
  • keepdims (optional): If True, the reduced dimensions are retained as dimensions of size one in the output. Default is False.
  • initial (optional): Initial value to start the comparison. If not provided, the default is the maximum possible value for the data type.
  • where (optional): A Boolean array. If True, include the corresponding element in the computation; otherwise, ignore it.

Return Values

This function returns a scalar value or a NumPy array containing the minimum values along the specified axis, ignoring NaN values.

Example

Following is a basic example of finding the minimum value in an array using the NumPy nanmin() function, while ignoring NaN values −

import numpy as np  
# input array with NaN values  
array = np.array([3, np.nan, 1, 7, 9])  
# finding the minimum value, ignoring NaN  
min_value = np.nanmin(array)  
print("Minimum Value (ignoring NaN):", min_value)  

Output

Following is the output of the above code −

Minimum Value (ignoring NaN): 1.0  

Example: Minimum Along an Axis

The nanmin() function can find the minimum values along a specified axis of a multi-dimensional array, while ignoring NaN values. In the following example, we have computed the minimum values along rows and columns −

import numpy as np  
# 2D input array with NaN values  
array = np.array([[3, 7, np.nan], [8, np.nan, 2], [6, 1, 9]])  
# minimum along rows (axis=1)  
min_along_rows = np.nanmin(array, axis=1)  
print("Minimum along rows:", min_along_rows)  
# minimum along columns (axis=0)  
min_along_columns = np.nanmin(array, axis=0)  
print("Minimum along columns:", min_along_columns)  

Output

Following is the output of the above code −

Minimum along rows: [ 3.  2.  1.]  
Minimum along columns: [ 3.  1.  2.]  

Example: Minimum value with 'keepdims'

The keepdims parameter retains the reduced dimension as a size-one dimension in the output. This means that when we pass a multi-dimensional array and set this parameter to True, the reduced dimension's size is kept as 1, preserving the original dimensionality of the array. In the following example, we have demonstrated its use −

import numpy as np  
# 2D input array with NaN values  
array = np.array([[3, np.nan, 5], [8, 4, np.nan], [6, 1, 9]])  
# minimum along columns with keepdims=True  
min_with_keepdims = np.nanmin(array, axis=0, keepdims=True)  
print("Minimum with keepdims:\n", min_with_keepdims)  

Output

Following is the output of the above code −

Minimum with keepdims:
 [[3. 1. 5.]]

Example: Minimum with Where Condition

The where parameter allows computation of the minimum value based on a condition. In the following example, we have computed the minimum element greater than 7, while ignoring NaN values −

import numpy as np  
# input array with NaN values  
array = np.array([3, 5, np.nan, 7, 9])  
min_without_condition = np.nanmin(array)  
print("Minimum without condition (ignoring NaN):", min_without_condition)  

# where condition (only include values greater than 7)  
min_with_condition = np.nanmin(array, where=array > 7, initial=10)  
print("Minimum with condition:", min_with_condition)  

Output

Following is the output of the above code −

Minimum without condition (ignoring NaN): 3.0
Minimum with condition: 9.0

Example: Graphical Representation of 'nanmin()'

In the following example, we have visualized the minimum value along rows and columns of a 2D array with NaN values. To achieve this, we need to import the numpy and matplotlib.pyplot modules −

import numpy as np  
import matplotlib.pyplot as plt  

# 2D input array with NaN values  
array = np.array([[3, np.nan, 5], [8, 4, np.nan], [6, 1, 9]])  
# minimum along rows  
min_rows = np.nanmin(array, axis=1)  
# minimum along columns  
min_columns = np.nanmin(array, axis=0)  

plt.plot(range(len(min_rows)), min_rows, label="Minimum along rows (ignoring NaN)")  
plt.plot(range(len(min_columns)), min_columns, label="Minimum along columns (ignoring NaN)")  
plt.title("Visualization of nanmin() Results")  
plt.xlabel("Index")  
plt.ylabel("Minimum Value")  
plt.legend()  
plt.grid()  
plt.show()  

Output

The plot visualizes the minimum values along rows and columns of the array, ignoring NaN values −

nanmin Visualization
numpy_statistical_functions.htm
Advertisements