
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy nanvar() Function
The NumPy nanvar() function computes the variance of array elements along a specified axis, ignoring NaN
values. This function measures the spread or dispersion of a distribution while excluding NaN
values from the calculation. By default, the variance is computed for the flattened array, but it can also be calculated along a specific axis.
In statistics, the variance is a measure of the spread of a data set. The formula is var = sum((x_i - mean)^2) / N, where x_i is each data point, mean is the mean of the data, and N is the number of data points. For the nanvar() function, NaN
values are ignored in the calculation.
For a one-dimensional array, the variance is computed over all elements excluding NaN
. For multi-dimensional arrays, the variance is computed along the specified axis while ignoring NaN
values.
Syntax
Following is the syntax of the NumPy nanvar() function −
numpy.nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>, where=<no value>, mean=<no value>, correction=<no value>)
Parameters
Following are the parameters of the NumPy nanvar() function −
- a: Input array or object that can be converted to an array. It can be a NumPy array, list, or a scalar value.
- axis (optional): Axis or axes along which the variance is computed. Default is None, which means the variance is computed over the entire array.
- dtype (optional): Data type to use in computing the variance. If None, it is inferred from the input array.
- out (optional): A location into which the result is stored. If provided, it must have the same shape as the expected output.
-
ddof (optional): Delta Degrees of Freedom. The divisor used in the calculation is N - ddof, where N is the number of elements (excluding
NaN
). Default is 0. - keepdims (optional): If True, the reduced dimensions are retained as dimensions of size one in the output. Default is False.
- where (optional): A boolean array specifying the elements to include in the calculation.
- mean (optional): Provides the mean to prevent its re-calculation. The shape of the mean should match as if calculated with keepdims=True.
- correction (optional): Controls the calculation of variance, with options for modifying degrees of freedom and more.
Return Values
This function returns the variance of the input array, ignoring NaN
values. The result is a scalar if the input is one-dimensional, and an array if the input is multi-dimensional.
Example
Following is a basic example to compute the variance of an array using the NumPy nanvar() function −
import numpy as np # input array with NaN values x = np.array([1, 2, np.nan, 4, 5]) # applying nanvar result = np.nanvar(x) print("Variance Result (ignoring NaN):", result)
Output
Following is the output of the above code −
Variance Result (ignoring NaN): 2.5
Example: Specifying an Axis
The nanvar() function can compute the variance along a specific axis of a multi-dimensional array while ignoring NaN
values. In the following example, we have computed the variance along axis 0 (columns) and axis 1 (rows) of a 2D array −
import numpy as np # 2D array with NaN values x = np.array([[1, 2, np.nan], [4, np.nan, 6], [7, 8, 9]]) # applying nanvar along axis 0 (columns) result_axis0 = np.nanvar(x, axis=0) # applying nanvar along axis 1 (rows) result_axis1 = np.nanvar(x, axis=1) print("Variance along axis 0 (ignoring NaN):", result_axis0) print("Variance along axis 1 (ignoring NaN):", result_axis1)
Output
Following is the output of the above code −
Variance along axis 0 (ignoring NaN): [6. 9. 2.25] Variance along axis 1 (ignoring NaN): [0.25 1. 0.66666667]
Example: Usage of 'ddof' Parameter
The ddof (Delta Degrees of Freedom) parameter adjusts the divisor used in the variance calculation. By default, ddof=0, but it can be set to a different value to customize the calculation. In the following example, we have computed the variance with ddof=1 −
import numpy as np # input array with NaN values x = np.array([1, 2, np.nan, 4, 5]) # applying nanvar with ddof=1 result = np.nanvar(x, ddof=1) print("Variance with ddof=1 (ignoring NaN):", result)
Output
Following is the output of the above code −
Variance with ddof=1 (ignoring NaN): 3.3333333333333335
Example: Plotting 'nanvar()' Function
In the following example, we plot the behavior of the nanvar() function. We calculate and plot the variance for different sizes of input arrays while ignoring NaN
values −
import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 10, 100) x[::10] = np.nan # introduce NaN values # compute variance ignoring NaN y = np.nanvar(x) plt.plot(x, np.full_like(x, y, dtype=np.float64), label="Variance (ignoring NaN)") plt.title("Variance Function (ignoring NaN)") plt.xlabel("Input") plt.ylabel("Variance Value") plt.legend() plt.grid() plt.show()
Output
The plot demonstrates the variance value across the input range while ignoring NaN
values −
