
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy packbits() Function
The NumPy packbits() function which is used to pack the elements of a binary-valued array into bits in a uint8 array. This function compresses an array of binary values i.e 0s and 1s into an array of 8-bit unsigned integers where each bit in the resulting uint8 array represents an element from the input array.
Here in this function we can operate along a specified axis or on the flattened input array. It's particularly useful for reducing memory usage when dealing with large arrays of binary data.
Syntax
Following is the syntax of Numpy packbits() function −
numpy.packbits(a, /, axis=None, bitorder='big')
Parameters
Following are the Parameters of Numpy packbits() function −
- a(array_like): Input array of binary values.
- axis: This parameter is the axis along which to pack bits. If None then the array is flattened.
- bitorder: Bit order in the packed representation either 'big' or 'little'.
Return value
This function returns an array of type uint8 containing the packed bytes.
Example 1
Following is the basic example of Numpy packbits() function in which, packs a 1D array of bits into an array of bytes −
import numpy as np # Define the input array of bits (0s and 1s) bits = np.array([1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1], dtype=np.uint8) # Pack the bits into bytes packed = np.packbits(bits) print(packed)
Below is the output of packbits() function −
[178 229]
Example 2
Packing a 2D array along the default axis in NumPy involves converting the binary values 0s and 1s in each row of the array into a more compact representation such as bytes.
The default axis for the packbits() function is -1 which refers to the last axis typically the columns for a 2D array. Here is the example of it −
import numpy as np # Define a 2D array of bits bit_array = np.array([[0, 1, 1, 0, 0, 1, 1, 1], [1, 0, 1, 1, 0, 0, 0, 0]], dtype=np.uint8) # Pack the bits into bytes packed_array = np.packbits(bit_array) print("Original bit array:\n", bit_array) print("Packed array:", packed_array)
Following is the output for the above example −
Original bit array: [[0 1 1 0 0 1 1 1] [1 0 1 1 0 0 0 0]] Packed array: [103 176]
Example 3
Below is the example which shows how the packbits() function works on a 3D array −
import numpy as np # Create a 3D array arr = np.array([[[1, 0, 1], [0, 1, 0]], [[1, 1, 0], [0, 0, 1]], [[1, 1, 0], [0, 0, 1]]]) # Displaying our array print("Array...") print(arr) # Get the datatype print("Array datatype...", arr.dtype) # Get the dimensions of the Array print("Array Dimensions...", arr.ndim) # Get the shape of the Array print("Our Array Shape...", arr.shape) # Get the number of elements of the Array print("Elements in the Array...", arr.size) # To pack the elements of a binary-valued array into bits in a uint8 array, use the numpy.packbits() method in Python Numpy # The result is padded to full bytes by inserting zero bits at the end res = np.packbits(arr) print("Result...", res)
Following is the output for the above example −
Array... [[[1 0 1] [0 1 0]] [[1 1 0] [0 0 1]] [[1 1 0] [0 0 1]]] Array datatype... int64 Array Dimensions... 3 Our Array Shape... (3, 2, 3) Elements in the Array... 18 Result... [171 28 64]