
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy rad2deg() Function
The NumPy rad2deg() function converts angles from radians to degrees. The standard unit of angular measurement is degrees, and the relationship between degrees and radians is −
degrees = radians (180 / )
This function is particularly useful in trigonometric calculations where angles need to be in degrees.
Syntax
Following is the syntax of the NumPy rad2deg() function −
numpy.rad2deg(x, out=None, where=True, casting='same_kind', order='K', dtype=None, subok=True)
Parameters
Following are the parameters of the NumPy rad2deg() function −
- x: Input array. The elements represent angles in radians and can be a NumPy array, list, or scalar value.
- out (optional): Alternate output array to place the result. It must have the same shape as the expected output.
- where (optional): A Boolean array. If True, compute the result; otherwise, it leaves the corresponding output elements unchanged.
- dtype (optional): Specifies the data type of the result.
- casting (optional): Ensures equivalent type conversion occurs. For example, converting from `float32` to `float64` is allowed, but converting from `float64` to `int32` is not.
- subok (optional): Determines whether to subclass the output array if the data type is changed or to return a base-class array.
- order (optional): Specifies the memory layout of the array −
- 'C': C-style row-major order.
- 'F': Fortran-style column-major order.
- 'A': 'F' if the input is Fortran contiguous, 'C' otherwise.
- 'K': This is the default value. Keeps the order as close as possible to the input.
Return Values
This function returns a NumPy array with the angles in degrees corresponding to the input angles in radians.
Example
Following is a basic example to convert angles in radians to degrees using the NumPy rad2deg() function −
import numpy as np # input array angles_in_radians = np.array([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi]) # converting to degrees angles_in_degrees = np.rad2deg(angles_in_radians) print("Degrees:", angles_in_degrees)
Output
Following is the output of the above code −
Degrees: [ 0. 90. 180. 270. 360.]
Example: Scalar Input
The rad2deg() function also accepts a scalar input. In the following example, we have passed as an argument to the rad2deg() function −
import numpy as np # scalar input radian = np.pi # converting to degrees degree = np.rad2deg(radian) print("Degree for Scalar Input:", degree)
Output
Following is the output of the above code −
Degree for Scalar Input: 180.0
Example: Multi-dimensional Array
The rad2deg() function operates on multi-dimensional arrays. In the following example, we have created a 2X2 NumPy array with angles in radians and converted them to degrees −
import numpy as np # 2D array of angles in radians angles_in_radians = np.array([[0, np.pi/2], [np.pi, 3*np.pi/2]]) # converting to degrees angles_in_degrees = np.rad2deg(angles_in_radians) print("Degrees for 2D Array:\n", angles_in_degrees)
Output
Following is the output of the above code −
Degrees for 2D Array: [[ 0. 90.] [180. 270.]]
Example: Graphical Representation of 'rad2deg()'
In the following example, we have plotted the linear relationship between radians and degrees. To achieve this, we need to import the numpy and matplotlib.pyplot modules −
import numpy as np import matplotlib.pyplot as plt radians = np.linspace(0, 2*np.pi, 100) # range of angles in radians degrees = np.rad2deg(radians) # converting to degrees plt.plot(radians, degrees) plt.title("Radians to Degrees Conversion") plt.xlabel("Radians") plt.ylabel("Degrees") plt.grid() plt.show()