
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy sinh() Function
The NumPy sinh() function is used to calculate the hyperbolic sine of each element in the input array. It computes the value of sin(x) = (ex - e(-x)) / 2 for each element in the array, where e is Euler's number (approximately 2.71828). This function is commonly used in hyperbolic functions.
- Domain: The function accepts real-valued input and can handle both positive and negative values. The domain is all real numbers.
- Range: The output values can be any real number, ranging from negative to positive infinity, as the hyperbolic sine function spans the entire set of real numbers.
Syntax
Following is the syntax of the NumPy sinh() function −
numpy.sinh(x, /, out=None, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
Parameters
This function accepts the following parameters −
- x: The input array or scalar. The function computes the hyperbolic sine for each element in the array or scalar.
- out (optional): A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned.
- where (optional): This condition is broadcast over the input. At locations where the condition is True, the result will be computed. Otherwise, the result will retain its original value.
- casting (optional): Controls what kind of data casting may occur. Defaults to 'same_kind'.
- order (optional): Controls the memory layout order of the result. 'C' means C-order, 'F' means Fortran-order, 'A' means 'F' if inputs are all F, 'C' otherwise, 'K' means match the layout of the inputs as closely as possible.
- dtype (optional): The type of the returned array and of the accumulator in which the elements are processed. The dtype of x is used by default unless dtype is specified.
- subok (optional): If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array.
Return Value
This function returns an array where each element is the hyperbolic sine of the corresponding element in the input array x.
Example: Basic Usage of sinh() Function
In the following example, we use the sinh() function to compute the hyperbolic sine of each element in a 1-dimensional array −
import numpy as np # Creating a 1-dimensional array arr = np.array([0, 1, 2, 3]) # Applying sinh to each element result = np.sinh(arr) print(result)
The output obtained will be −
[ 0. 1.17520119 3.62686041 10.01787493]
Example: Hyperbolic Sine of Negative Values
In this example, we calculate the hyperbolic sine of negative values. The hyperbolic sine function is odd, meaning that sinh(-x) = -sinh(x) −
import numpy as np # Negative values for the array arr = np.array([-1, -2, -3]) # Applying sinh to each element result = np.sinh(arr) print(result)
This will produce the following result −
[ -1.17520119 -3.62686041 -10.01787493]
Example: Hyperbolic Sine for Scalar Value
In this example, we use the sinh() function to calculate the hyperbolic sine of a scalar value −
import numpy as np # Scalar value scalar = 1 # Applying sinh to the scalar result = np.sinh(scalar) print(result)
The output obtained is −
1.1752011936438014
Example: Hyperbolic Sine of an Array with Different Shapes
In this example, we calculate the hyperbolic sine of two arrays with different shapes. NumPy will broadcast the arrays to be compatible for element-wise computation −
import numpy as np # Creating two arrays with different shapes arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) # Applying sinh to each pair of elements (broadcasting) result = np.sinh(arr1 + arr2) print(result)
This will produce the following result −
[ 74.20321058 548.31612327 4051.54190208]