
PyBrain

 i

PyBrain

 ii

About the Tutorial

Pybrain is an open-source library for Machine learning implemented using python. The

library offers you some easy to use training algorithms for networks, datasets, trainers to

train and test the network.

Audience

This tutorial is designed for software programmers who want to learn the basics of Pybrain

and its programming concepts in a simple and easy manner. This tutorial will give enough

understanding on the various functionalities of Pybrain with suitable examples.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of Python and

Machine Learning.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

PyBrain

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. PyBrain — Overview ... 1

Features of Pybrain ... 1

Advantages of Pybrain ... 2

Limitations of Pybrain .. 2

Workflow of Pybrain .. 2

Terminology ... 3

2. PyBrain — Environment Setup .. 5

Installing Python .. 5

Installing PyBrain ... 8

3. PyBrain ― Introduction to PyBrain Networks ... 10

4. PyBrain — Working with Networks ... 13

Creating Network .. 13

Analyzing Network... 14

5. PyBrain ― Working with Datasets .. 15

Creating Dataset .. 15

Adding Data to Dataset ... 16

6. PyBrain — Datasets Types... 18

SupervisedDataSet .. 18

ClassificationDataSet ... 20

7. PyBrain ― Importing Data For Datasets .. 25

Using sklearn ... 25

PyBrain

 iv

From CSV file ... 26

8. PyBrain — Training Datasets on Networks .. 29

9. PyBrain ― Testing Network .. 34

Testing our Network .. 34

10. PyBrain — Working with Feed-Forward Networks .. 40

Creating a Feed Forward Network .. 40

Adding Modules and Connections ... 41

11. PyBrain ― Working with Recurrent Networks .. 45

Creating a Recurrent Network ... 45

Adding Modules and Connection .. 45

12. PyBrain — Training Network Using Optimization Algorithms .. 48

13. PyBrain ― Layers in Pybrain ... 50

Understanding layers... 50

Creating Layer in Pybrain ... 53

14. PyBrain — Connections in Pybrain .. 56

Understanding Connections .. 56

Creating Connections .. 57

15. PyBrain ― Reinforcement Learning Module ... 60

16. PyBrain ― API & Tools .. 66

Save and Recover Network.. 66

API ... 68

17. PyBrain ― Examples ... 70

Example 1 .. 70

Example 2 .. 71

PyBrain

 1

Pybrain is an open-source library for Machine learning implemented using python. The

library offers you some easy to use training algorithms for networks, datasets, trainers to

train and test the network.

Definition of Pybrain as put by its official documentation is as follows:

PyBrain is a modular Machine Learning Library for Python. Its goal is to offer flexible, easy-

to-use yet still powerful algorithms for Machine Learning Tasks and a variety of predefined

environments to test and compare your algorithms.

PyBrain is short for Python-Based Reinforcement Learning, Artificial Intelligence, and

Neural Network Library. In fact, we came up with the name first and later reverse-

engineered this quite descriptive "Backronym".

Features of Pybrain

The following are the features of Pybrain:

Networks

A network is composed of modules and they are connected using connections. Pybrain

supports neural networks like Feed-Forward Network, Recurrent Network, etc.

A feed-forward network is a neural network, where the information between nodes

moves in the forward direction and will never travel backward. Feed Forward network is

the first and the simplest one among the networks available in the artificial neural network.

The information is passed from the input nodes, next to the hidden nodes and later to the

output node.

Recurrent Networks are similar to Feed Forward Network; the only difference is that it

has to remember the data at each step. The history of each step has to be saved.

Datasets

Datasets is the data to be given to test, validate and train on networks. The type of dataset

to be used depends on the tasks that we are going to do with Machine Learning. The most

commonly used datasets that Pybrain supports are SupervisedDataSet and

ClassificationDataSet.

SupervisedDataSet: It consists of fields of input and target. It is the simplest form of

a dataset and mainly used for supervised learning tasks.

ClassificationDataSet: It is mainly used to deal with classification problems. It takes in

input, target field and also an extra field called "class" which is an automated backup of

the targets given. For example, the output will be either 1 or 0 or the output will be

grouped together with values based on input given, i.e., either it will fall in one particular

class.

Trainer

1. PyBrain — Overview

http://pybrain.org/

PyBrain

 2

When we create a network, i.e., neural network, it will get trained based on the training

data given to it. Now whether the network is trained properly or not will depend on the

prediction of test data tested on that network. The most important concept in Pybrain

Training is the use of BackpropTrainer and TrainUntilConvergence.

BackpropTrainer: It is a trainer that trains the parameters of a module according to a

supervised or ClassificationDataSet dataset (potentially sequential) by backpropagating

the errors (through time).

TrainUntilConvergence: It is used to train the module on the dataset until it converges.

Tools

Pybrain offers tools modules which can help to build a network by importing package:

pybrain.tools.shortcuts.buildNetwork

Visualization

The testing data cannot be visualized using pybrain. But Pybrain can work with other

frameworks like Mathplotlib, pyplot to visualize the data.

Advantages of Pybrain

The advantages of Pybrain are:

 Pybrain is an open-source free library to learn Machine Learning. It is a good start

for any newcomer interested in Machine Learning.

 Pybrain uses python to implement it and that makes it fast in development in

comparison to languages like Java/C++.

 Pybrain works easily with other libraries of python to visualize data.

 Pybrain offers support for popular networks like Feed-Forward Network, Recurrent

Networks, Neural Networks, etc.

 Working with .csv to load datasets is very easy in Pybrain. It also allows using

datasets from another library.

 Training and testing of data are easy using Pybrain trainers.

Limitations of Pybrain

Pybrain offers less help for any issues faced. There are some queries unanswered on

stackoverflow and on Google Group.

Workflow of Pybrain

As per Pybrain documentation the flow of machine learning is shown in the following figure:

https://stackoverflow.com/
http://groups.google.com/group/pybrain.
http://pybrain.org/docs/tutorial/intro.html

PyBrain

 3

At the start, we have raw data which after preprocessing can be used with Pybrain.

The flow of Pybrain starts with datasets which are divided into trained and test data.

 the network is created, and the dataset and the network are given to the trainer.

 the trainer trains the data on the network and classifies the outputs as trained error

and validation error which can be visualized.

 the tested data can be validated to see if the output matches the trained data.

Terminology

There are important terms to be considered while working with Pybrain for machine

learning. They are as follows:

Total Error: It refers to the error shown after the network is trained. If the error keeps

changing on every iteration, it means it still needs time to settle, until it starts showing a

PyBrain

 4

constant error between iteration. Once it starts showing the constant error numbers, it

means that the network has converged and will remain the same irrespective of any

additional training is applied.

Trained data: It is the data used to train the Pybrain network.

Testing data: It is the data used to test the trained Pybrain network.

Trainer: When we create a network, i.e., neural network, it will get trained based on the

training data given to it. Now whether the network is trained properly or not will depend

on the prediction of test data tested on that network. The most important concept in

Pybrain Training is the use of BackpropTrainer and TrainUntilConvergence.

BackpropTrainer: It is a trainer that trains the parameters of a module according to a

supervised or ClassificationDataSet dataset (potentially sequential) by backpropagating

the errors (through time).

TrainUntilConvergence: It is used to train the module on the dataset until it converges.

Layers: Layers are basically a set of functions that are used on hidden layers of a network.

Connections: A connection works similar to a layer; an only difference is that it shifts the

data from one node to the other in a network.

Modules: Modules are networks which consists of input and output buffer.

Supervised Learning: In this case, we have an input and output, and we can make use

of an algorithm to map the input with the output. The algorithm is made to learn on the

training data given and iterated on it and the process of iteration stops when the algorithm

predicts the correct data.

Unsupervised: In this case, we have input but don't know the output. The role of

unsupervised learning is to get trained as much as possible with the data given.

PyBrain

 5

In this chapter, we will work on the installation of PyBrain. To start working with PyBrain,

we need to install Python first. So we are going to work on following:

 Install Python

 Install PyBrain

Installing Python

To install Python, go to the Python official site: https://www.python.org/downloads/ as

shown below and click on the latest version available for windows, Linux/Unix and macOS.

Download Python as per your 64- or 32-bit OS available with you.

Once you have downloaded, click on the .exe file and follow the steps to install python on

your system.

2. PyBrain — Environment Setup

https://www.python.org/downloads/

PyBrain

 6

The python package manager, i.e., pip will also get installed by default with the above

installation. To make it work globally on your system, directly add the location of python

to the PATH variable, the same is shown at the start of the installation to remember to

check the checkbox which says ADD to PATH. In case you forget to check it please follow

the below given steps to add to PATH.

Add to PATH

To add to PATH, follow the below steps:

 Right-click on your Computer icon and click on properties -> Advanced System

Settings.

 It will display the screen as shown below:

PyBrain

 7

 Click on Environment Variables as shown above. It will display the screen as shown

below:

PyBrain

 8

Select Path and click on Edit button, add the location path of your python at the end. Now

let us check the python version.

Checking for Python version

The below code helps us in checking the version of Python:

E:\pybrain>python --version

Python 3.7.3

Installing PyBrain

Now that we have installed Python, we are going to install Pybrain. Clone the pybrain

repository as shown below:

git clone git://github.com/pybrain/pybrain.git

C:\pybrain>git clone git://github.com/pybrain/pybrain.git

Cloning into 'pybrain'...

remote: Enumerating objects: 2, done.

remote: Counting objects: 100% (2/2), done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 12177 (delta 0), reused 0 (delta 0), pack-reused 12175

PyBrain

 9

Receiving objects: 100% (12177/12177), 13.29 MiB | 510.00 KiB/s, done.

Resolving deltas: 100% (8506/8506), done.

Now perform cd pybrain and run following command:

python setup.py install

This command will install pybrain on your system.

Once done, to check if pybrain is installed or not, open command line prompt and start

the python interpreter as shown below:

C:\pybrain\pybrain>python

Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 22:22:05) [MSC v.1916 64 bit

(AMD6

4)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

We can add import pybrain using the below code:

>>> import pybrain

>>>

If the import pybrain works without any errors, it means pybrain in installed successfully.

You can now write your code to start working with pybrain.

PyBrain

 10

PyBrain is a library developed for Machine Learning with Python. There are some important

concepts in Machine Learning and one among them is Networks. A network is composed

of modules and they are connected using connections.

A layout of a simple neural network is as follows:

Pybrain supports neural networks such as Feed-Forward Network, Recurrent Network, etc.

A feed-forward network is a neural network, where the information between nodes

moves in the forward direction and will never travel backward. Feed Forward network is

the first and the simplest one among the networks available in the artificial neural network.

The information is passed from the input nodes, next to the hidden nodes and later to the

output node.

Here is a simple feed forward network layout.

3. PyBrain ― Introduction to PyBrain Networks

PyBrain

 11

The circles are said to be modules and the lines with arrows are connections to the

modules.

The nodes A, B, C and D are input nodes.

 H1, H2, H3, H4 are hidden nodes and O is the output.

In the above network, we have 4 input nodes, 4 hidden layers and 1 output. The number

of lines shown in the diagram indicate the weight parameters in the model that are

adjusted during training.

Recurrent Networks are similar to Feed Forward Network with the only difference that

it has to remember the data at each step. The history of each step has to be saved.

Here is a simple Layout of Recurrent Network:

PyBrain

 12

PyBrain

 13

A network is composed of modules, and they are connected using connections. In this

chapter, we will learn to:

 Create Network

 Analyze Network

Creating Network

We are going to use python interpreter to execute our code. To create a network in

pybrain, we have to use buildNetwork api as shown below:

C:\pybrain\pybrain>python

Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 22:22:05) [MSC v.1916 64 bit

(AMD6

4)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

>>>

>>> from pybrain.tools.shortcuts import buildNetwork

>>> network = buildNetwork(2, 3, 1)

>>>

We have created a network using buildNetwork() and the params are 2, 3, 1 which means

the network is made up of 2 inputs, 3 hidden and one single output.

Below are the details of the network, i.e., Modules and Connections:

C:\pybrain\pybrain>python

Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 22:22:05) [MSC v.1916 64 bit

(AMD6

4)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> from pybrain.tools.shortcuts import buildNetwork

>>> network = buildNetwork(2,3,1)

>>> print(network)

FeedForwardNetwork-8

 Modules:

 [<BiasUnit 'bias'>, <LinearLayer 'in'>, <SigmoidLayer 'hidden0'>,

<LinearLay

4. PyBrain — Working with Networks

PyBrain

 14

er 'out'>]

 Connections:

 [<FullConnection 'FullConnection-4': 'hidden0' -> 'out'>, <FullConnection

'F

ullConnection-5': 'in' -> 'hidden0'>, <FullConnection 'FullConnection-6':

'bias'

 -> 'out'>, <FullConnection 'FullConnection-7': 'bias' -> 'hidden0'>]

>>>

Modules consists of Layers, and Connection are made from FullConnection Objects. So

each of the modules and connection are named as shown above.

Analyzing Network

You can access the module layers and connection individually by referring to their names

as follows:

>>> network['bias']

<BiasUnit 'bias'>

>>> network['in']

<LinearLayer 'in'>

PyBrain

 15

Datasets is an input data to be given to test, validate and train networks. The type of

dataset to be used depends on the tasks that we are going to do with Machine Learning.

In this chapter, we are going to take a look at the following:

 Creating Dataset

 Adding Data to Dataset

We will first learn how to create a Dataset and test the dataset with the input given.

Creating Dataset

To create a dataset we need to use the pybrain dataset package: pybrain.datasets.

Pybrain supports datasets classes like SupervisedDataset, SequentialDataset,

ClassificationDataSet. We are going to make use of SupervisedDataset , to create our

dataset.The dataset to be used depends on the machine learning task that user is trying

to implement.SupervisedDataset is the simplest one and we are going to use the same

over here.

A SupervisedDataset dataset needs params input and target. Consider an XOR truth

table, as shown below:

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

The inputs that are given are like a 2-dimensional array and we get 1 output. So here the

input becomes the size and the target it the output which is 1. So the inputs that will go

for our dataset will 2,1.

createdataset.py

from pybrain.datasets import SupervisedDataSet

sds = SupervisedDataSet(2, 1)

print(sds)

This is what we get when we execute above code python createdataset.py:

C:\pybrain\pybrain\src>python createdataset.py

input: dim(0, 2)

[]

5. PyBrain ― Working with Datasets

PyBrain

 16

target: dim(0, 1)

[]

It displays the input of size 2 and target of size 1 as shown above.

Adding Data to Dataset

Let us now add the sample data to the dataset.

createdataset.py

from pybrain.datasets import SupervisedDataSet

sds = SupervisedDataSet(2, 1)

xorModel = [

 [(0,0), (0,)],

 [(0,1), (1,)],

 [(1,0), (1,)],

 [(1,1), (0,)],

]

for input, target in xorModel:

 sds.addSample(input, target)

print("Input is:")

print(sds['input'])

print("\nTarget is:")

print(sds['target'])

We have created a XORModel array as shown below:

xorModel = [

 [(0,0), (0,)],

 [(0,1), (1,)],

 [(1,0), (1,)],

 [(1,1), (0,)],

]

To add data to the dataset, we are using addSample() method which takes in input and

target.

PyBrain

 17

To add data to the addSample, we will loop through xorModel array as shown below:

for input, target in xorModel:

 sds.addSample(input, target)

After executing, the following is the output we get:

python createdataset.py

C:\pybrain\pybrain\src>python createdataset.py

Input is:

[[0. 0.]

 [0. 1.]

 [1. 0.]

 [1. 1.]]

Target is:

[[0.]

 [1.]

 [1.]

 [0.]]

You can get the input and target details from the dataset created by simply using the input

and target index as shown below:

print(sds['input'])

print(sds[‘target’])

PyBrain

 18

Datasets are data to be given to test, validate and train on networks. The type of dataset

to be used depends on the tasks that we are going to do with machine learning. We are

going to discuss the various dataset types in this chapter.

We can work with the dataset by adding the following package:

pybrain.dataset

SupervisedDataSet

SupervisedDataSet consists of fields of input and target. It is the simplest form of a

dataset and mainly used for supervised learning tasks.

Below is how you can use it in the code:

from pybrain.datasets import SupervisedDataSet

The methods available on SupervisedDataSet are as follows:

addSample(inp, target)

This method will add a new sample of input and target.

splitWithProportion(proportion=0.10)

This will divide the datasets into two parts. The first part will have the % of the dataset

given as input, i.e., if the input is .10, then it is 10% of the dataset and 90% of data. You

can decide the proportion as per your choice. The divided datasets can be used for testing

and training your network.

copy(): Returns a deep copy of the dataset.

clear(): Clear the dataset.

saveToFile(filename, format=None, **kwargs)

Save the object to file given by filename.

Example

Here is a working example using a SupervisedDataset:

testnetwork.py

from pybrain.tools.shortcuts import buildNetwork

from pybrain.structure import TanhLayer

6. PyBrain — Datasets Types

PyBrain

 19

from pybrain.datasets import SupervisedDataSet

from pybrain.supervised.trainers import BackpropTrainer

Create a network with two inputs, three hidden, and one output

nn = buildNetwork(2, 3, 1, bias=True, hiddenclass=TanhLayer)

Create a dataset that matches network input and output sizes:

norgate = SupervisedDataSet(2, 1)

Create a dataset to be used for testing.

nortrain = SupervisedDataSet(2, 1)

Add input and target values to dataset

Values for NOR truth table

norgate.addSample((0, 0), (1,))

norgate.addSample((0, 1), (0,))

norgate.addSample((1, 0), (0,))

norgate.addSample((1, 1), (0,))

Add input and target values to dataset

Values for NOR truth table

nortrain.addSample((0, 0), (1,))

nortrain.addSample((0, 1), (0,))

nortrain.addSample((1, 0), (0,))

nortrain.addSample((1, 1), (0,))

#Training the network with dataset norgate.

trainer = BackpropTrainer(nn, norgate)

will run the loop 1000 times to train it.

for epoch in range(1000):

 trainer.train()

trainer.testOnData(dataset=nortrain, verbose = True)

Output

PyBrain

 20

The output for the above program is as follows:

python testnetwork.py

C:\pybrain\pybrain\src>python testnetwork.py

Testing on data:

('out: ', '[0.887]')

('correct:', '[1]')

error: 0.00637334

('out: ', '[0.149]')

('correct:', '[0]')

error: 0.01110338

('out: ', '[0.102]')

('correct:', '[0]')

error: 0.00522736

('out: ', '[-0.163]')

('correct:', '[0]')

error: 0.01328650

('All errors:', [0.006373344564625953, 0.01110338071737218,

0.005227359234093431

, 0.01328649974219942])

('Average error:', 0.008997646064572746)

('Max error:', 0.01328649974219942, 'Median error:', 0.01110338071737218)

ClassificationDataSet

This dataset is mainly used to deal with classification problems. It takes in input, target

field and also an extra field called "class" which is an automated backup of the targets

given. For example, the output will be either 1 or 0 or the output will be grouped together

with values based on input given., i.e., it will fall in one particular class.

Here is how you can use it in the code:

from pybrain.datasets import ClassificationDataSet

Syntax

// ClassificationDataSet(inp, target=1, nb_classes=0, class_labels=None)

The methods available on ClassificationDataSet are as follows:

addSample(inp, target): This method will add a new sample of input and target.

PyBrain

 21

splitByClass(): This method will give two new datasets, the first dataset will have the

class selected (0..nClasses-1), the second one will have remaining samples.

_convertToOneOfMany(): This method will convert the target classes to a 1-of-k

representation, retaining the old targets as a field class

Here is a working example of ClassificationDataSet.

from sklearn import datasets

import matplotlib.pyplot as plt

from pybrain.datasets import ClassificationDataSet

from pybrain.utilities import percentError

from pybrain.tools.shortcuts import buildNetwork

from pybrain.supervised.trainers import BackpropTrainer

from pybrain.structure.modules import SoftmaxLayer

from numpy import ravel

digits = datasets.load_digits()

X, y = digits.data, digits.target

ds = ClassificationDataSet(64, 1, nb_classes=10)

for i in range(len(X)):

 ds.addSample(ravel(X[i]), y[i])

test_data_temp, training_data_temp = ds.splitWithProportion(0.25)

test_data = ClassificationDataSet(64, 1, nb_classes=10)

for n in range(0, test_data_temp.getLength()):

 test_data.addSample(test_data_temp.getSample(n)[0],

test_data_temp.getSample(n)[1])

training_data = ClassificationDataSet(64, 1, nb_classes=10)

for n in range(0, training_data_temp.getLength()):

 training_data.addSample(training_data_temp.getSample(n)[0],

training_data_temp.getSample(n)[1])

test_data._convertToOneOfMany()

training_data._convertToOneOfMany()

PyBrain

 22

net = buildNetwork(training_data.indim, 64, training_data.outdim,

outclass=SoftmaxLayer)

trainer = BackpropTrainer(net, dataset=training_data,

momentum=0.1,learningrate=0.01,verbose=True,weightdecay=0.01)

trnerr,valerr =

trainer.trainUntilConvergence(dataset=training_data,maxEpochs=10)

plt.plot(trnerr,'b',valerr,'r')

plt.show()

trainer.trainEpochs(10)

print('Percent Error on

testData:',percentError(trainer.testOnClassData(dataset=test_data),

test_data['class']))

The dataset used in the above example is a digit dataset and the classes are from 0-9, so

there are 10 classes. The input is 64, target is 1 and classes, 10.

The code trains the network with the dataset and outputs the graph for training error and

validation error. It also gives the percent error on testdata which is as follows:

Output

PyBrain

 23

Total error: 0.0432857814358

Total error: 0.0222276374185

Total error: 0.0149012052174

Total error: 0.011876985318

Total error: 0.00939854792853

Total error: 0.00782202445183

Total error: 0.00714707652044

Total error: 0.00606068893793

Total error: 0.00544257958975

Total error: 0.00463929281336

Total error: 0.00441275665294

('train-errors:', '[0.043286 , 0.022228 , 0.014901 , 0.011877 , 0.009399 ,

0.007

822 , 0.007147 , 0.006061 , 0.005443 , 0.004639 , 0.004413]')

PyBrain

 24

('valid-errors:', '[0.074296 , 0.027332 , 0.016461 , 0.014298 , 0.012129 ,

0.009

248 , 0.008922 , 0.007917 , 0.006547 , 0.005883 , 0.006572 , 0.005811]')

Percent Error on testData: 3.34075723830735

PyBrain

 25

In this chapter, we will learn how to get data to work with Pybrain datasets.

The most commonly used are datasets are:

 Using sklearn

 From CSV file

Using sklearn

We can make import datasets from sklearn and use the data to train a network.

Here is the link that has details of datasets from sklearn: https://scikit-

learn.org/stable/datasets/index.html

Here are a few examples of how to use datasets from sklearn:

Example 1: load_digits()

from sklearn import datasets

from pybrain.datasets import ClassificationDataSet

digits = datasets.load_digits()

X, y = digits.data, digits.target

ds = ClassificationDataSet(64, 1, nb_classes=10)

for i in range(len(X)):

 ds.addSample(ravel(X[i]), y[i])

Example 2: load_iris()

from sklearn import datasets

from pybrain.datasets import ClassificationDataSet

digits = datasets.load_iris()

X, y = digits.data, digits.target

ds = ClassificationDataSet(4, 1, nb_classes=3)

7. PyBrain ― Importing Data For Datasets

https://scikit-learn.org/stable/datasets/index.html
https://scikit-learn.org/stable/datasets/index.html

PyBrain

 26

for i in range(len(X)):

 ds.addSample(X[i], y[i])

From CSV file

We can also use data from csv file as follows:

Here is sample data for xor truth table: datasettest.csv

Here is the working example to read the data from .csv file for dataset.

from pybrain.tools.shortcuts import buildNetwork

from pybrain.structure import TanhLayer

from pybrain.datasets import SupervisedDataSet

from pybrain.supervised.trainers import BackpropTrainer

import pandas as pd

print('Read data...')

df = pd.read_csv('data/datasettest.csv',header=0).head(1000)

data = df.values

train_output = data[:,0]

train_data = data[:,1:]

print(train_output)

print(train_data)

Create a network with two inputs, three hidden, and one output

nn = buildNetwork(2, 3, 1, bias=True, hiddenclass=TanhLayer)

Create a dataset that matches network input and output sizes:

_gate = SupervisedDataSet(2, 1)

Create a dataset to be used for testing.

nortrain = SupervisedDataSet(2, 1)

PyBrain

 27

Add input and target values to dataset

Values for NOR truth table

for i in range(0, len(train_output)) :

 _gate.addSample(train_data[i], train_output[i])

#Training the network with dataset norgate.

trainer = BackpropTrainer(nn, _gate)

will run the loop 1000 times to train it.

for epoch in range(1000):

 trainer.train()

trainer.testOnData(dataset=_gate, verbose = True)

Panda is used to read data from csv file as shown in the example.

Output

C:\pybrain\pybrain\src>python testcsv.py

Read data...

[0 1 1 0]

[[0 0]

 [0 1]

 [1 0]

 [1 1]]

Testing on data:

('out: ', '[0.004]')

('correct:', '[0]')

error: 0.00000795

('out: ', '[0.997]')

('correct:', '[1]')

error: 0.00000380

('out: ', '[0.996]')

('correct:', '[1]')

error: 0.00000826

('out: ', '[0.004]')

('correct:', '[0]')

PyBrain

 28

error: 0.00000829

('All errors:', [7.94733477723902e-06, 3.798267582566822e-06,

8.260969076585322e

-06, 8.286246525558165e-06])

('Average error:', 7.073204490487332e-06)

('Max error:', 8.286246525558165e-06, 'Median error:', 8.260969076585322e-06)

PyBrain

 29

So far, we have seen how to create a network and a dataset. To work with datasets and

networks together, we have to do it with the help of trainers.

Below is a working example to see how to add a dataset to the network created, and later

trained and tested using trainers.

testnetwork.py

from pybrain.tools.shortcuts import buildNetwork

from pybrain.structure import TanhLayer

from pybrain.datasets import SupervisedDataSet

from pybrain.supervised.trainers import BackpropTrainer

Create a network with two inputs, three hidden, and one output

nn = buildNetwork(2, 3, 1, bias=True, hiddenclass=TanhLayer)

Create a dataset that matches network input and output sizes:

norgate = SupervisedDataSet(2, 1)

Create a dataset to be used for testing.

nortrain = SupervisedDataSet(2, 1)

Add input and target values to dataset

Values for NOR truth table

norgate.addSample((0, 0), (1,))

norgate.addSample((0, 1), (0,))

norgate.addSample((1, 0), (0,))

norgate.addSample((1, 1), (0,))

Add input and target values to dataset

Values for NOR truth table

nortrain.addSample((0, 0), (1,))

nortrain.addSample((0, 1), (0,))

nortrain.addSample((1, 0), (0,))

8. PyBrain — Training Datasets on Networks

PyBrain

 30

nortrain.addSample((1, 1), (0,))

#Training the network with dataset norgate.

trainer = BackpropTrainer(nn, norgate)

will run the loop 1000 times to train it.

for epoch in range(1000):

 trainer.train()

trainer.testOnData(dataset=nortrain, verbose = True)

To test the network and dataset, we need BackpropTrainer. BackpropTrainer is a trainer

that trains the parameters of a module according to a supervised dataset (potentially

sequential) by backpropagating the errors (through time).

We have created 2 datasets of class - SupervisedDataSet. We are making use of NOR data

model which is as follows:

A B A NOR B

0 0 1

0 1 0

1 0 0

1 1 0

The above data model is used to train the network.

norgate = SupervisedDataSet(2, 1)

Add input and target values to dataset

Values for NOR truth table

norgate.addSample((0, 0), (1,))

norgate.addSample((0, 1), (0,))

norgate.addSample((1, 0), (0,))

norgate.addSample((1, 1), (0,))

Following is the dataset used to test:

Create a dataset to be used for testing.

nortrain = SupervisedDataSet(2, 1)

Add input and target values to dataset

Values for NOR truth table

PyBrain

 31

norgate.addSample((0, 0), (1,))

norgate.addSample((0, 1), (0,))

norgate.addSample((1, 0), (0,))

norgate.addSample((1, 1), (0,))

The trainer is used as follows:

#Training the network with dataset norgate.

trainer = BackpropTrainer(nn, norgate)

will run the loop 1000 times to train it.

for epoch in range(1000):

 trainer.train()

To test on the dataset, we can use the below code:

trainer.testOnData(dataset=nortrain, verbose = True)

Output

python testnetwork.py

C:\pybrain\pybrain\src>python testnetwork.py

Testing on data:

('out: ', '[0.887]')

('correct:', '[1]')

error: 0.00637334

('out: ', '[0.149]')

('correct:', '[0]')

error: 0.01110338

('out: ', '[0.102]')

('correct:', '[0]')

error: 0.00522736

('out: ', '[-0.163]')

('correct:', '[0]')

error: 0.01328650

('All errors:', [0.006373344564625953, 0.01110338071737218,

0.005227359234093431

, 0.01328649974219942])

('Average error:', 0.008997646064572746)

('Max error:', 0.01328649974219942, 'Median error:', 0.01110338071737218)

PyBrain

 32

If you check the output, the test data almost matches with the dataset we have provided

and hence the error is 0.008.

Let us now change the test data and see an average error. We have changed the output

as shown below:

Following is the dataset used to test:

Create a dataset to be used for testing.

nortrain = SupervisedDataSet(2, 1)

Add input and target values to dataset

Values for NOR truth table

norgate.addSample((0, 0), (0,))

norgate.addSample((0, 1), (1,))

norgate.addSample((1, 0), (1,))

norgate.addSample((1, 1), (0,))

Let us now test it.

Output

python testnework.py

C:\pybrain\pybrain\src>python testnetwork.py

Testing on data:

('out: ', '[0.988]')

('correct:', '[0]')

error: 0.48842978

('out: ', '[0.027]')

('correct:', '[1]')

error: 0.47382097

('out: ', '[0.021]')

('correct:', '[1]')

error: 0.47876379

('out: ', '[-0.04]')

('correct:', '[0]')

error: 0.00079160

('All errors:', [0.4884297811030845, 0.47382096780393873, 0.47876378995939756,

0

.0007915982149002194])

('Average error:', 0.3604515342703303)

PyBrain

 33

('Max error:', 0.4884297811030845, 'Median error:', 0.47876378995939756)

We are getting the error as 0.36, which shows that our test data is not completely

matching with the network trained.

PyBrain

 34

In this chapter, we are going to see some example where we are going to train the data

and test the errors on the trained data.

We are going to make use of trainers:

BackpropTrainer

BackpropTrainer is trainer that trains the parameters of a module according to a

supervised or ClassificationDataSet dataset (potentially sequential) by backpropagating

the errors (through time).

TrainUntilConvergence

It is used to train the module on the dataset until it converges.

When we create a neural network, it will get trained based on the training data given to

it.Now whether the network is trained properly or not will depend on prediction of test

data tested on that network.

Let us see a working example step by step which where will build a neural network and

predict the training errors, test errors and validation errors.

Testing our Network

Following are the steps we will follow for testing our Network:

 Importing required PyBrain and other packages

 Create ClassificationDataSet

 Splitting the datasets 25% as testdata and 75% as trained data

 Converting Testdata and Trained data back as ClassificationDataSet

 Creating a Neural Network

 Training the Network

 Visualizing the error and validation data

 Percentage for test data Error

Step 1

Importing required PyBrain and other packages.

The packages that we need are imported as shown below:

from sklearn import datasets

import matplotlib.pyplot as plt

from pybrain.datasets import ClassificationDataSet

from pybrain.utilities import percentError

9. PyBrain ― Testing Network

PyBrain

 35

from pybrain.tools.shortcuts import buildNetwork

from pybrain.supervised.trainers import BackpropTrainer

from pybrain.structure.modules import SoftmaxLayer

from numpy import ravel

Step 2

The next step is to create ClassificationDataSet.

For Datasets, we are going to use datasets from sklearn datasets as shown below:

Refer load_digits datasets from sklearn in the below link:

https://scikit-

learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.l

oad_digits

digits = datasets.load_digits()

X, y = digits.data, digits.target

ds = ClassificationDataSet(64, 1, nb_classes=10) # we are having inputs are 64

dim array and since the digits are from 0-9 the classes considered is 10.

for i in range(len(X)):

 ds.addSample(ravel(X[i]), y[i]) # adding sample to datasets

Step 3

Splitting the datasets 25% as testdata and 75% as trained data:

test_data_temp, training_data_temp = ds.splitWithProportion(0.25)

So here, we have used a method on dataset called splitWithProportion() with value 0.25,

it will split the dataset into 25% as test data and 75% as training data.

Step 4

Converting Testdata and Trained data back as ClassificationDataSet.

test_data = ClassificationDataSet(64, 1, nb_classes=10)

for n in range(0, test_data_temp.getLength()):

 test_data.addSample(test_data_temp.getSample(n)[0],

test_data_temp.getSample(n)[1])

training_data = ClassificationDataSet(64, 1, nb_classes=10)

for n in range(0, training_data_temp.getLength()):

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits

PyBrain

 36

 training_data.addSample(training_data_temp.getSample(n)[0],

training_data_temp.getSample(n)[1])

test_data._convertToOneOfMany()

training_data._convertToOneOfMany()

Using splitWithProportion() method on dataset converts the dataset to superviseddataset,

so we will convert the dataset back to classificationdataset as shown in above step.

Step 5

Next step is creating a Neural Network.

net = buildNetwork(training_data.indim, 64, training_data.outdim,

outclass=SoftmaxLayer)

We are creating a network wherein the input and output are used from the training data.

Step 6

Training the Network

Now the important part is training the network on the dataset as shown below:

trainer = BackpropTrainer(net, dataset=training_data,

momentum=0.1,learningrate=0.01,verbose=True,weightdecay=0.01)

We are using BackpropTrainer() method and using dataset on the network created.

Step 7

The next step is visualizing the error and validation of the data.

trnerr,valerr =

trainer.trainUntilConvergence(dataset=training_data,maxEpochs=10)

plt.plot(trnerr,'b',valerr,'r')

plt.show()

We will use a method called trainUntilConvergence on training data that will converge for

epochs of 10. It will return training error and validation error which we have plotted as

shown below. The blue line shows the training errors and red line shows the validation

error.

PyBrain

 37

Total error received during execution of the above code is shown below:

Total error: 0.0432857814358

Total error: 0.0222276374185

Total error: 0.0149012052174

Total error: 0.011876985318

Total error: 0.00939854792853

Total error: 0.00782202445183

Total error: 0.00714707652044

Total error: 0.00606068893793

Total error: 0.00544257958975

Total error: 0.00463929281336

Total error: 0.00441275665294

('train-errors:', '[0.043286 , 0.022228 , 0.014901 , 0.011877 , 0.009399 ,

0.007

822 , 0.007147 , 0.006061 , 0.005443 , 0.004639 , 0.004413]')

PyBrain

 38

('valid-errors:', '[0.074296 , 0.027332 , 0.016461 , 0.014298 , 0.012129 ,

0.009

248 , 0.008922 , 0.007917 , 0.006547 , 0.005883 , 0.006572 , 0.005811]')

The error starts at 0.04 and later goes down for each epoch, which means the network is

getting trained and gets better for each epoch.

Step 8

Percentage for test data error

We can check the percent error using percentError method as shown below:

print('Percent Error on

testData:',percentError(trainer.testOnClassData(dataset=test_data),

test_data['class']))

Percent Error on testData: 3.34075723830735

We are getting the error percent, i.e., 3.34%, which means the neural network is 97%

accurate.

Below is the full code:

from sklearn import datasets

import matplotlib.pyplot as plt

from pybrain.datasets import ClassificationDataSet

from pybrain.utilities import percentError

from pybrain.tools.shortcuts import buildNetwork

from pybrain.supervised.trainers import BackpropTrainer

from pybrain.structure.modules import SoftmaxLayer

from numpy import ravel

digits = datasets.load_digits()

X, y = digits.data, digits.target

ds = ClassificationDataSet(64, 1, nb_classes=10)

for i in range(len(X)):

 ds.addSample(ravel(X[i]), y[i])

test_data_temp, training_data_temp = ds.splitWithProportion(0.25)

test_data = ClassificationDataSet(64, 1, nb_classes=10)

for n in range(0, test_data_temp.getLength()):

 test_data.addSample(test_data_temp.getSample(n)[0],

test_data_temp.getSample(n)[1])

PyBrain

 39

training_data = ClassificationDataSet(64, 1, nb_classes=10)

for n in range(0, training_data_temp.getLength()):

 training_data.addSample(training_data_temp.getSample(n)[0],

training_data_temp.getSample(n)[1])

test_data._convertToOneOfMany()

training_data._convertToOneOfMany()

net = buildNetwork(training_data.indim, 64, training_data.outdim,

outclass=SoftmaxLayer)

trainer = BackpropTrainer(net, dataset=training_data,

momentum=0.1,learningrate=0.01,verbose=True,weightdecay=0.01)

trnerr,valerr =

trainer.trainUntilConvergence(dataset=training_data,maxEpochs=10)

plt.plot(trnerr,'b',valerr,'r')

plt.show()

trainer.trainEpochs(10)

print('Percent Error on

testData:',percentError(trainer.testOnClassData(dataset=test_data),

test_data['class']))

PyBrain

 40

A feed-forward network is a neural network, where the information between nodes moves

in the forward direction and will never travel backward. Feed Forward network is the first

and the simplest one among the networks available in the artificial neural network. The

information is passed from the input nodes, next to the hidden nodes and later to the

output node.

In this chapter we are going to discuss how to:

 Create Feed-Forward Networks

 Add Connection and Modules to FFN

Creating a Feed Forward Network

You can use the python IDE of your choice, i.e., PyCharm. In this, we are using Visual

Studio Code to write the code and will execute the same in terminal.

To create a feedforward network, we need to import it from pybrain.structure as shown

below:

ffn.py

from pybrain.structure import FeedForwardNetwork

network = FeedForwardNetwork()

print(network)

Execute ffn.py as shown below:

C:\pybrain\pybrain\src>python ffn.py

FeedForwardNetwork-0

 Modules:

 []

 Connections:

 []

We have not added any modules and connections to the feedforward network. Hence the

network shows empty arrays for Modules and Connections.

10. PyBrain — Working with Feed-Forward
Networks

PyBrain

 41

Adding Modules and Connections

First we will create input, hidden, output layers and add the same to the modules as shown

below:

ffy.py

from pybrain.structure import FeedForwardNetwork

from pybrain.structure import LinearLayer, SigmoidLayer

network = FeedForwardNetwork()

#creating layer for input => 2 , hidden=> 3 and output=>1

inputLayer = LinearLayer(2)

hiddenLayer = SigmoidLayer(3)

outputLayer = LinearLayer(1)

#adding the layer to feedforward network

network.addInputModule(inputLayer)

network.addModule(hiddenLayer)

network.addOutputModule(outputLayer)

print(network)

Output

C:\pybrain\pybrain\src>python ffn.py

FeedForwardNetwork-3

 Modules:

 []

 Connections:

 []

We are still getting the modules and connections as empty. We need to provide a

connection to the modules created as shown below:

Here is the code where we have created a connection between input, hidden and output

layers and add the connection to the network.

ffy.py

from pybrain.structure import FeedForwardNetwork

PyBrain

 42

from pybrain.structure import LinearLayer, SigmoidLayer

from pybrain.structure import FullConnection

network = FeedForwardNetwork()

#creating layer for input => 2 , hidden=> 3 and output=>1

inputLayer = LinearLayer(2)

hiddenLayer = SigmoidLayer(3)

outputLayer = LinearLayer(1)

#adding the layer to feedforward network

network.addInputModule(inputLayer)

network.addModule(hiddenLayer)

network.addOutputModule(outputLayer)

#Create connection between input ,hidden and output

input_to_hidden = FullConnection(inputLayer, hiddenLayer)

hidden_to_output = FullConnection(hiddenLayer, outputLayer)

#add connection to the network

network.addConnection(input_to_hidden)

network.addConnection(hidden_to_output)

print(network)

Output

C:\pybrain\pybrain\src>python ffn.py

FeedForwardNetwork-3

 Modules:

 []

 Connections:

 []

PyBrain

 43

We are still not able to get the modules and connections. Let us now add the final step,

i.e., we need to add the sortModules() method as shown below:

ffy.py

from pybrain.structure import FeedForwardNetwork

from pybrain.structure import LinearLayer, SigmoidLayer

from pybrain.structure import FullConnection

network = FeedForwardNetwork()

#creating layer for input => 2 , hidden=> 3 and output=>1

inputLayer = LinearLayer(2)

hiddenLayer = SigmoidLayer(3)

outputLayer = LinearLayer(1)

#adding the layer to feedforward network

network.addInputModule(inputLayer)

network.addModule(hiddenLayer)

network.addOutputModule(outputLayer)

#Create connection between input ,hidden and output

input_to_hidden = FullConnection(inputLayer, hiddenLayer)

hidden_to_output = FullConnection(hiddenLayer, outputLayer)

#add connection to the network

network.addConnection(input_to_hidden)

network.addConnection(hidden_to_output)

network.sortModules()

print(network)

Output

C:\pybrain\pybrain\src>python ffn.py

FeedForwardNetwork-6

 Modules:

 [<LinearLayer 'LinearLayer-3'>, <SigmoidLayer 'SigmoidLayer-7'>,

<LinearLayer 'LinearLayer-8'>]

 Connections:

PyBrain

 44

 [<FullConnection 'FullConnection-4': 'SigmoidLayer-7' -> 'LinearLayer-8'>,

<FullConnection 'FullConnection-5': 'LinearLayer-3' -> 'SigmoidLayer-7'>]

We are now able to see the modules and the connections details for feedforwardnetwork.

PyBrain

 45

Recurrent Networks is same as feed-forward network with only difference that you need

to remember the data at each step.The history of each step has to be saved.

We will learn how to:

 Create a Recurrent Network

 Adding Modules and Connection

Creating a Recurrent Network

To create recurrent network, we will use RecurrentNetwork class as shown below:

rn.py

from pybrain.structure import RecurrentNetwork

recurrentn = RecurrentNetwork()

print(recurrentn)

python rn.py

C:\pybrain\pybrain\src>python rn.py

RecurrentNetwork-0

 Modules:

 []

 Connections:

 []

 Recurrent Connections:

 []

We can see a new connection called Recurrent Connections for the recurrent network.

Right now there is no data available.

Let us now create the layers and add to modules and create connections.

Adding Modules and Connection

We are going to create layers, i.e., input, hidden and output. The layers will be added to

the input and output module. Next, we will create the connection for input to hidden,

hidden to output and a recurrent connection between hidden to hidden.

Here is the code for the Recurrent network with modules and connections.

11. PyBrain ― Working with Recurrent Networks

PyBrain

 46

rn.py

from pybrain.structure import RecurrentNetwork

from pybrain.structure import LinearLayer, SigmoidLayer

from pybrain.structure import FullConnection

recurrentn = RecurrentNetwork()

#creating layer for input => 2 , hidden=> 3 and output=>1

inputLayer = LinearLayer(2, 'rn_in')

hiddenLayer = SigmoidLayer(3, 'rn_hidden')

outputLayer = LinearLayer(1, 'rn_output')

#adding the layer to feedforward network

recurrentn.addInputModule(inputLayer)

recurrentn.addModule(hiddenLayer)

recurrentn.addOutputModule(outputLayer)

#Create connection between input ,hidden and output

input_to_hidden = FullConnection(inputLayer, hiddenLayer)

hidden_to_output = FullConnection(hiddenLayer, outputLayer)

hidden_to_hidden = FullConnection(hiddenLayer, hiddenLayer)

#add connection to the network

recurrentn.addConnection(input_to_hidden)

recurrentn.addConnection(hidden_to_output)

recurrentn.addRecurrentConnection(hidden_to_hidden)

recurrentn.sortModules()

print(recurrentn)

python rn.py

C:\pybrain\pybrain\src>python rn.py

RecurrentNetwork-6

 Modules:

 [<LinearLayer 'rn_in'>, <SigmoidLayer 'rn_hidden'>, <LinearLayer

'rn_output'>]

PyBrain

 47

 Connections:

 [<FullConnection 'FullConnection-4': 'rn_hidden' -> 'rn_output'>,

<FullConnection 'FullConnection-5': 'rn_in' -> 'rn_hidden'>]

 Recurrent Connections:

 [<FullConnection 'FullConnection-3': 'rn_hidden' -> 'rn_hidden'>]

In above ouput we can see the Modules, Connections and Recurrent Connections.

Let us now activate the network using activate method as shown below:

rn.py

Add below code to the one created earlier:

#activate network using activate() method

act1 = recurrentn.activate((2, 2))

print(act1)

act2 = recurrentn.activate((2, 2))

print(act2)

python rn.py

C:\pybrain\pybrain\src>python rn.py

[-1.24317586]

[-0.54117783]

PyBrain

 48

We have seen how to train a network using trainers in pybrain. In this chapter, will use

optimization algorithms available with Pybrain to train a network.

In the example, we will use the GA optimization algorithm which needs to be imported as

shown below:

from pybrain.optimization.populationbased.ga import GA

Below is a working example of a training network using a GA optimization algorithm:

from pybrain.datasets.classification import ClassificationDataSet

from pybrain.optimization.populationbased.ga import GA

from pybrain.tools.shortcuts import buildNetwork

create XOR dataset

ds = ClassificationDataSet(2)

ds.addSample([0., 0.], [0.])

ds.addSample([0., 1.], [1.])

ds.addSample([1., 0.], [1.])

ds.addSample([1., 1.], [0.])

ds.setField('class', [[0.],[1.],[1.],[0.]])

net = buildNetwork(2, 3, 1)

ga = GA(ds.evaluateModuleMSE, net, minimize=True)

for i in range(100):

 net = ga.learn(0)[0]

print(net.activate([0,0]))

print(net.activate([1,0]))

print(net.activate([0,1]))

print(net.activate([1,1]))

The activate method on the network for the inputs almost matches with the output as

shown below:

C:\pybrain\pybrain\src>python example15.py

12. PyBrain — Training Network Using
Optimization Algorithms

PyBrain

 49

[0.03055398]

[0.92094839]

[1.12246157]

[0.02071285]

PyBrain

 50

Layers are basically a set of functions that are used on hidden layers of a network.

We will go through the following details about layers in this chapter:

 Understanding layers

 Creating Layer using Pybrain

Understanding layers

We have seen examples earlier where we have used layers as follows:

 TanhLayer

 SoftmaxLayer

Example using TanhLayer

Below is one example where we have used TanhLayer for building a network:

testnetwork.py

from pybrain.tools.shortcuts import buildNetwork

from pybrain.structure import TanhLayer

from pybrain.datasets import SupervisedDataSet

from pybrain.supervised.trainers import BackpropTrainer

Create a network with two inputs, three hidden, and one output

nn = buildNetwork(2, 3, 1, bias=True, hiddenclass=TanhLayer)

Create a dataset that matches network input and output sizes:

norgate = SupervisedDataSet(2, 1)

Create a dataset to be used for testing.

nortrain = SupervisedDataSet(2, 1)

Add input and target values to dataset

Values for NOR truth table

norgate.addSample((0, 0), (1,))

norgate.addSample((0, 1), (0,))

13. PyBrain ― Layers in Pybrain

PyBrain

 51

norgate.addSample((1, 0), (0,))

norgate.addSample((1, 1), (0,))

Add input and target values to dataset

Values for NOR truth table

nortrain.addSample((0, 0), (1,))

nortrain.addSample((0, 1), (0,))

nortrain.addSample((1, 0), (0,))

nortrain.addSample((1, 1), (0,))

#Training the network with dataset norgate.

trainer = BackpropTrainer(nn, norgate)

will run the loop 1000 times to train it.

for epoch in range(1000):

 trainer.train()

trainer.testOnData(dataset=nortrain, verbose = True)

Output

The output for the above code is as follows:

python testnetwork.py

C:\pybrain\pybrain\src>python testnetwork.py

Testing on data:

('out: ', '[0.887]')

('correct:', '[1]')

error: 0.00637334

('out: ', '[0.149]')

('correct:', '[0]')

error: 0.01110338

('out: ', '[0.102]')

('correct:', '[0]')

error: 0.00522736

('out: ', '[-0.163]')

('correct:', '[0]')

PyBrain

 52

error: 0.01328650

('All errors:', [0.006373344564625953, 0.01110338071737218,

0.005227359234093431

, 0.01328649974219942])

('Average error:', 0.008997646064572746)

('Max error:', 0.01328649974219942, 'Median error:', 0.01110338071737218)

 Example using SoftMaxLayer

Below is one example where we have used SoftmaxLayer for building a network:

from pybrain.tools.shortcuts import buildNetwork

from pybrain.structure.modules import SoftmaxLayer

from pybrain.datasets import SupervisedDataSet

from pybrain.supervised.trainers import BackpropTrainer

Create a network with two inputs, three hidden, and one output

nn = buildNetwork(2, 3, 1, bias=True, hiddenclass=SoftmaxLayer)

Create a dataset that matches network input and output sizes:

norgate = SupervisedDataSet(2, 1)

Create a dataset to be used for testing.

nortrain = SupervisedDataSet(2, 1)

Add input and target values to dataset

Values for NOR truth table

norgate.addSample((0, 0), (1,))

norgate.addSample((0, 1), (0,))

norgate.addSample((1, 0), (0,))

norgate.addSample((1, 1), (0,))

Add input and target values to dataset

Values for NOR truth table

nortrain.addSample((0, 0), (1,))

nortrain.addSample((0, 1), (0,))

nortrain.addSample((1, 0), (0,))

nortrain.addSample((1, 1), (0,))

PyBrain

 53

#Training the network with dataset norgate.

trainer = BackpropTrainer(nn, norgate)

will run the loop 1000 times to train it.

for epoch in range(1000):

 trainer.train()

trainer.testOnData(dataset=nortrain, verbose = True)

Output

The output is as follows:

C:\pybrain\pybrain\src>python example16.py

Testing on data:

('out: ', '[0.918]')

('correct:', '[1]')

error: 0.00333524

('out: ', '[0.082]')

('correct:', '[0]')

error: 0.00333484

('out: ', '[0.078]')

('correct:', '[0]')

error: 0.00303433

('out: ', '[-0.082]')

('correct:', '[0]')

error: 0.00340005

('All errors:', [0.0033352368788838365, 0.003334842961037291,

0.0030343286857187

61, 0.0034000458892589056])

('Average error:', 0.0032761136037246985)

('Max error:', 0.0034000458892589056, 'Median error:', 0.0033352368788838365)

Creating Layer in Pybrain

In Pybrain, you can create your own layer as follows:

To create a layer, you need to use NeuronLayer class as the base class to create all type

of layers.

PyBrain

 54

Example

from pybrain.structure.modules.neuronlayer import NeuronLayer

class LinearLayer(NeuronLayer):

 def _forwardImplementation(self, inbuf, outbuf):

 outbuf[:] = inbuf

 def _backwardImplementation(self, outerr, inerr, outbuf, inbuf):

 inerr[:] = outer

To create a Layer, we need to implement two methods: _forwardImplementation() and

_backwardImplementation().

The _forwardImplementation() takes in 2 arguments inbuf and outbuf, which are

Scipy arrays. Its size is dependent on the layers’ input and output dimensions.

The _backwardImplementation() is used to calculate the derivative of the output with

respect to the input given.

So to implement a layer in Pybrain, this is the skeleton of the layer class:

from pybrain.structure.modules.neuronlayer import NeuronLayer

class NewLayer(NeuronLayer):

 def _forwardImplementation(self, inbuf, outbuf):

 pass

 def _backwardImplementation(self, outerr, inerr, outbuf, inbuf):

 pass

In case you want to implement a quadratic polynomial function as a layer, we can do so

as follows:

Consider we have a polynomial function as:

f(x) = 3x2

The derivative of the above polynomial function will be as follows:

f(x) = 6 x

The final layer class for the above polynomial function will be as follows:

PyBrain

 55

testlayer.py

from pybrain.structure.modules.neuronlayer import NeuronLayer

class PolynomialLayer(NeuronLayer):

 def _forwardImplementation(self, inbuf, outbuf):

 outbuf[:] = 3*inbuf**2

 def _backwardImplementation(self, outerr, inerr, outbuf, inbuf):

 inerr[:] = 6*inbuf*outerr

Now let us make use of the layer created as shown below:

testlayer1.py

from testlayer import PolynomialLayer

from pybrain.tools.shortcuts import buildNetwork

from pybrain.tests.helpers import gradientCheck

n = buildNetwork(2, 3, 1, hiddenclass=PolynomialLayer)

n.randomize()

gradientCheck(n)

gradientCheck() will test whether the layer is working fine or not.We need to pass the

network where the layer is used to gradientCheck(n).It will give the output as “Perfect

Gradient” if the layer is working fine.

Output

C:\pybrain\pybrain\src>python testlayer1.py

Perfect gradient

PyBrain

 56

A connection works similar to a layer; an only difference is that it shifts the data from one

node to the other in a network.

In this chapter, we are going to learn about:

 Understanding Connections

 Creating Connections

Understanding Connections

Here is a working example of connections used while creating a network.

ffy.py

from pybrain.structure import FeedForwardNetwork

from pybrain.structure import LinearLayer, SigmoidLayer

from pybrain.structure import FullConnection

network = FeedForwardNetwork()

#creating layer for input => 2 , hidden=> 3 and output=>1

inputLayer = LinearLayer(2)

hiddenLayer = SigmoidLayer(3)

outputLayer = LinearLayer(1)

#adding the layer to feedforward network

network.addInputModule(inputLayer)

network.addModule(hiddenLayer)

network.addOutputModule(outputLayer)

#Create connection between input ,hidden and output

input_to_hidden = FullConnection(inputLayer, hiddenLayer)

hidden_to_output = FullConnection(hiddenLayer, outputLayer)

#add connection to the network

network.addConnection(input_to_hidden)

network.addConnection(hidden_to_output)

14. PyBrain — Connections in Pybrain

PyBrain

 57

network.sortModules()

print(network)

Output

C:\pybrain\pybrain\src>python ffn.py

FeedForwardNetwork-6

 Modules:

 [<LinearLayer 'LinearLayer-3'>, <SigmoidLayer 'SigmoidLayer-7'>,

<LinearLayer 'LinearLayer-8'>]

 Connections:

 [<FullConnection 'FullConnection-4': 'SigmoidLayer-7' -> 'LinearLayer-8'>,

<FullConnection 'FullConnection-5': 'LinearLayer-3' -> 'SigmoidLayer-7'>]

Creating Connections

In Pybrain, we can create connections by using the connection module as shown below:

connect.py

from pybrain.structure.connections.connection import Connection

class YourConnection(Connection):

 def __init__(self, *args, **kwargs):

 Connection.__init__(self, *args, **kwargs)

 def _forwardImplementation(self, inbuf, outbuf):

 outbuf += inbuf

 def _backwardImplementation(self, outerr, inerr, inbuf):

 inerr += outer

To create a connection, there are 2 methods — _forwardImplementation() and

_backwardImplementation().

The _forwardImplementation() is called with the output buffer of the incoming module

which is inbuf, and the input buffer of the outgoing module called outbuf. The inbuf is

added to the outgoing module outbuf.

The _backwardImplementation() is called with outerr, inerr, and inbuf. The outgoing

module error is added to the incoming module error in _backwardImplementation().

Let us now use the YourConnection in a network.

PyBrain

 58

testconnection.py

from pybrain.structure import FeedForwardNetwork

from pybrain.structure import LinearLayer, SigmoidLayer

from connect import YourConnection

network = FeedForwardNetwork()

#creating layer for input => 2 , hidden=> 3 and output=>1

inputLayer = LinearLayer(2)

hiddenLayer = SigmoidLayer(3)

outputLayer = LinearLayer(1)

#adding the layer to feedforward network

network.addInputModule(inputLayer)

network.addModule(hiddenLayer)

network.addOutputModule(outputLayer)

#Create connection between input ,hidden and output

input_to_hidden = YourConnection(inputLayer, hiddenLayer)

hidden_to_output = YourConnection(hiddenLayer, outputLayer)

#add connection to the network

network.addConnection(input_to_hidden)

network.addConnection(hidden_to_output)

network.sortModules()

print(network)

Output

C:\pybrain\pybrain\src>python testconnection.py

FeedForwardNetwork-6

 Modules:

 [<LinearLayer 'LinearLayer-3'>, <SigmoidLayer 'SigmoidLayer-7'>,

<LinearLaye

r 'LinearLayer-8'>]

 Connections:

PyBrain

 59

 [<YourConnection 'YourConnection-4': 'LinearLayer-3' -> 'SigmoidLayer-7'>,

<

YourConnection 'YourConnection-5': 'SigmoidLayer-7' -> 'LinearLayer-8'>]

PyBrain

 60

Reinforcement Learning (RL) is an important part in Machine Learning. Reinforcement

learning makes the agent learn its behaviour based on inputs from the environment.

The components that interact with each other during Reinforcement are as follows:

 Environment

 Agent

 Task

 Experiment

The layout of Reinforcement Learning is given below:

In RL, the agent talks with the environment in iteration. At each iteration, the agent

receives an observation which has the reward. It then chooses the action and sends to the

environment. The environment at each iteration moves to a new state and the reward

received each time is saved.

The goal of RL agent is to collect as many rewards as possible. In between the iteration

the agent's performance is compared with that of the agent that acts in a good way and

the difference in performance gives rise to either reward or failure. RL is basically used in

problem solving tasks like robot control, elevator, telecommunications, games etc.

Let us take a look at how to work with RL in Pybrain.

We are going to work on maze environment which will be represented using 2

dimensional numpy array where 1 is a wall and 0 is a free field. The agent's responsibility

is to move over the free field and find the goal point.

Here is a step by step flow of working with maze environment.

15. PyBrain ― Reinforcement Learning Module

PyBrain

 61

Step 1

Import the packages we need with the below code:

from scipy import *

import sys, time

import matplotlib.pyplot as pylab # for visualization we are using mathplotlib

from pybrain.rl.environments.mazes import Maze, MDPMazeTask

from pybrain.rl.learners.valuebased import ActionValueTable

from pybrain.rl.agents import LearningAgent

from pybrain.rl.learners import Q, QLambda, SARSA #@UnusedImport

from pybrain.rl.explorers import BoltzmannExplorer #@UnusedImport

from pybrain.rl.experiments import Experiment

from pybrain.rl.environments import Task

Step 2

Create the maze environment using the below code:

create the maze with walls as 1 and 0 is a free field

mazearray = array([[1, 1, 1, 1, 1, 1, 1, 1, 1],

 [1, 0, 0, 1, 0, 0, 0, 0, 1],

 [1, 0, 0, 1, 0, 0, 1, 0, 1],

 [1, 0, 0, 1, 0, 0, 1, 0, 1],

 [1, 0, 0, 1, 0, 1, 1, 0, 1],

 [1, 0, 0, 0, 0, 0, 1, 0, 1],

 [1, 1, 1, 1, 1, 1, 1, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 1, 1, 1, 1, 1, 1, 1, 1]])

env = Maze(mazearray, (7, 7)) # create the environment, the first parameter is

the maze array and second one is the goal field tuple

Step 3

The next step is to create Agent.

Agent plays an important role in RL. It will interact with the maze environment

using getAction() and integrateObservation() methods.

The agent has a controller (which will map the states to actions) and a learner.

PyBrain

 62

The controller in PyBrain is like a module, for which the input is states and convert them

into actions.

controller = ActionValueTable(81, 4)

controller.initialize(1.)

The ActionValueTable needs 2 inputs, i.e., the number of states and actions. The

standard maze environment has 4 actions: north, south, east, west.

Now we will create a learner. We are going to use SARSA() learning algorithm for the

learner to be used with the agent.

learner = SARSA()

agent = LearningAgent(controller, learner)

Step 4

This step is adding Agent to Environment.

To connect the agent to environment, we need a special component called task. The role

of a task is to look for the goal in the environment and how the agent gets rewards for

actions.

The environment has its own task. The Maze environment that we have used has

MDPMazeTask task. MDP stands for “markov decision process” which means, the agent

knows its position in the maze. The environment will be a parameter to the task.

task = MDPMazeTask(env)

Step 5

The next step after adding agent to environment is to create an Experiment.

Now we need to create the experiment, so that we can have the task and the agent co-

ordinate with each other.

experiment = Experiment(task, agent)

Now we are going to run the experiment 1000 times as shown below:

for i in range(1000):

 experiment.doInteractions(100)

 agent.learn()

 agent.reset()

The environment will run for 100 times between the agent and task when the following

code gets executed:

experiment.doInteractions(100)

PyBrain

 63

After each iteration, it gives back a new state to the task which decides what information

and reward should be passed to the agent. We are going to plot a new table after learning

and resetting the agent inside the for loop.

for i in range(1000):

 experiment.doInteractions(100)

 agent.learn()

 agent.reset()

 pylab.pcolor(table.params.reshape(81,4).max(1).reshape(9,9))

 pylab.savefig("test.png")

Here is the full code:

maze.py

from scipy import *

import sys, time

import matplotlib.pyplot as pylab

from pybrain.rl.environments.mazes import Maze, MDPMazeTask

from pybrain.rl.learners.valuebased import ActionValueTable

from pybrain.rl.agents import LearningAgent

from pybrain.rl.learners import Q, QLambda, SARSA #@UnusedImport

from pybrain.rl.explorers import BoltzmannExplorer #@UnusedImport

from pybrain.rl.experiments import Experiment

from pybrain.rl.environments import Task

create maze array

mazearray = array([[1, 1, 1, 1, 1, 1, 1, 1, 1],

 [1, 0, 0, 1, 0, 0, 0, 0, 1],

 [1, 0, 0, 1, 0, 0, 1, 0, 1],

 [1, 0, 0, 1, 0, 0, 1, 0, 1],

 [1, 0, 0, 1, 0, 1, 1, 0, 1],

 [1, 0, 0, 0, 0, 0, 1, 0, 1],

 [1, 1, 1, 1, 1, 1, 1, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 1, 1, 1, 1, 1, 1, 1, 1]])

env = Maze(mazearray, (7, 7))

create task

PyBrain

 64

task = MDPMazeTask(env)

#controller in PyBrain is like a module, for which the input is states and

convert them into actions.

controller = ActionValueTable(81, 4)

controller.initialize(1.)

create agent with controller and learner - using SARSA()

learner = SARSA()

create agent

agent = LearningAgent(controller, learner)

create experiment

experiment = Experiment(task, agent)

prepare plotting

pylab.gray()

pylab.ion()

for i in range(1000):

 experiment.doInteractions(100)

 agent.learn()

 agent.reset()

 pylab.pcolor(controller.params.reshape(81,4).max(1).reshape(9,9))

 pylab.savefig("test.png")

Output

python maze.py

PyBrain

 65

The color in the free field will be changed at each iteration.

PyBrain

 66

Now we know how to build a network and train it. In this chapter, we will understand how

to create and save the network, and use the network whenever required.

Save and Recover Network

We are going to make use of NetworkWriter and NetworkReader from Pybrain tool, i.e.,

pybrain.tools.customxml.

Here is a working example of the same:

from pybrain.tools.shortcuts import buildNetwork

from pybrain.tools.customxml import NetworkWriter

from pybrain.tools.customxml import NetworkReader

net = buildNetwork(2,1,1)

NetworkWriter.writeToFile(net, 'network.xml')

net = NetworkReader.readFrom('network.xml')

The network is saved inside network.xml.

NetworkWriter.writeToFile(net, 'network.xml')

To read the xml when required we can use code as follows:

net = NetworkReader.readFrom('network.xml')

Here is the network.xml file created:

<?xml version="1.0" ?>

<PyBrain>

 <Network class="pybrain.structure.networks.feedforward.FeedForwardNetwork"

name="FeedForwardNetwork-8">

 <name val="'FeedForwardNetwork-8'"/>

 <Modules>

 <LinearLayer

class="pybrain.structure.modules.linearlayer.LinearLayer" inmodule="True"

name="in">

 <name val="'in'"/>

 <dim val="2"/>

16. PyBrain ― API & Tools

PyBrain

 67

 </LinearLayer>

 <LinearLayer

class="pybrain.structure.modules.linearlayer.LinearLayer" name="out"

outmodule="True">

 <name val="'out'"/>

 <dim val="1"/>

 </LinearLayer>

 <BiasUnit class="pybrain.structure.modules.biasunit.BiasUnit"

name="bias">

 <name val="'bias'"/>

 </BiasUnit>

 <SigmoidLayer

class="pybrain.structure.modules.sigmoidlayer.SigmoidLayer" name="hidden0">

 <name val="'hidden0'"/>

 <dim val="1"/>

 </SigmoidLayer>

 </Modules>

 <Connections>

 <FullConnection

class="pybrain.structure.connections.full.FullConnection" name="FullConnection-

6">

 <inmod val="bias"/>

 <outmod val="out"/>

 <Parameters>[1.2441093186965146]</Parameters>

 </FullConnection>

 <FullConnection

class="pybrain.structure.connections.full.FullConnection" name="FullConnection-

7">

 <inmod val="bias"/>

 <outmod val="hidden0"/>

 <Parameters>[-1.5743530012126412]</Parameters>

 </FullConnection>

 <FullConnection

class="pybrain.structure.connections.full.FullConnection" name="FullConnection-

4">

 <inmod val="in"/>

 <outmod val="hidden0"/>

 <Parameters>[-0.9429546042034236, -

0.09858196752687162]</Parameters>

 </FullConnection>

PyBrain

 68

 <FullConnection

class="pybrain.structure.connections.full.FullConnection" name="FullConnection-

5">

 <inmod val="hidden0"/>

 <outmod val="out"/>

 <Parameters>[-0.29205472354634304]</Parameters>

 </FullConnection>

 </Connections>

 </Network>

</PyBrain>

API

Below is a list of APIs that we have used throughout this tutorial.

For Networks

 activate(input): It takes parameter, i.e., the value to be tested. It will return

back the result based on the input given.

 activateOnDataset(dataset): It will iterate over the dataset given and return

the output.

 addConnection(c): Adds connection to the network.

 addInputModule(m): Adds the module given to the network and mark it as an

input module.

 addModule(m): Adds the given module to the network.

 addOutputModule(m): Adds the module to the network and mark it as an output

module.

 reset(): Resets the modules and the network.

 sortModules(): It prepares the network for activation by sorting internally. It has

to be called before activation.

For Supervised Datasets

 addSample(inp, target): Adds a new sample of input and target.

 splitWithProportion(proportion=0.5): Divides dataset into two parts, the first

part containing the proportion part data and the next set containing the remaining

one.

PyBrain

 69

For Trainers

trainUntilConvergence(dataset=None, maxEpochs=None, verbose=None,

continueEpochs=10, validationProportion=0.25): It is used to train the module on

the dataset until it converges. If dataset is not given, it will try to train on the trained

dataset used at the start.

PyBrain

 70

In this chapter, all possible examples which are executed using PyBrain are listed.

Example 1

Working with NOR Truth Table and testing it for correctness.

from pybrain.tools.shortcuts import buildNetwork

from pybrain.structure import TanhLayer

from pybrain.datasets import SupervisedDataSet

from pybrain.supervised.trainers import BackpropTrainer

Create a network with two inputs, three hidden, and one output

nn = buildNetwork(2, 3, 1, bias=True, hiddenclass=TanhLayer)

Create a dataset that matches network input and output sizes:

norgate = SupervisedDataSet(2, 1)

Create a dataset to be used for testing.

nortrain = SupervisedDataSet(2, 1)

Add input and target values to dataset

Values for NOR truth table

norgate.addSample((0, 0), (1,))

norgate.addSample((0, 1), (0,))

norgate.addSample((1, 0), (0,))

norgate.addSample((1, 1), (0,))

Add input and target values to dataset

Values for NOR truth table

nortrain.addSample((0, 0), (1,))

nortrain.addSample((0, 1), (0,))

nortrain.addSample((1, 0), (0,))

nortrain.addSample((1, 1), (0,))

17. PyBrain ― Examples

PyBrain

 71

#Training the network with dataset norgate.

trainer = BackpropTrainer(nn, norgate)

will run the loop 1000 times to train it.

for epoch in range(1000):

 trainer.train()

trainer.testOnData(dataset=nortrain, verbose = True)

Output

C:\pybrain\pybrain\src>python testnetwork.py

Testing on data:

('out: ', '[0.887]')

('correct:', '[1]')

error: 0.00637334

('out: ', '[0.149]')

('correct:', '[0]')

error: 0.01110338

('out: ', '[0.102]')

('correct:', '[0]')

error: 0.00522736

('out: ', '[-0.163]')

('correct:', '[0]')

error: 0.01328650

('All errors:', [0.006373344564625953, 0.01110338071737218,

0.005227359234093431

, 0.01328649974219942])

('Average error:', 0.008997646064572746)

('Max error:', 0.01328649974219942, 'Median error:', 0.01110338071737218)

Example 2

For Datasets, we are going to use datasets from sklearn datasets as shown below:

Refer load_digits datasets from sklearn: https://scikit-

learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.l

oad_digits

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits

PyBrain

 72

It has 10 classes, i.e., digits to be predicted from 0-9.

The total input data in X is 64.

from sklearn import datasets

import matplotlib.pyplot as plt

from pybrain.datasets import ClassificationDataSet

from pybrain.utilities import percentError

from pybrain.tools.shortcuts import buildNetwork

from pybrain.supervised.trainers import BackpropTrainer

from pybrain.structure.modules import SoftmaxLayer

from numpy import ravel

digits = datasets.load_digits()

X, y = digits.data, digits.target

ds = ClassificationDataSet(64, 1, nb_classes=10)) # we are having inputs are

64 dim array and since the digits are from 0-9 the classes considered is 10.

for i in range(len(X)):

 ds.addSample(ravel(X[i]), y[i]) # adding sample to datasets

test_data_temp, training_data_temp = ds.splitWithProportion(0.25) #Splitting the

datasets 25% as testdata and 75% as trained data

Using splitWithProportion() method on dataset converts the dataset to

#superviseddataset, so we will convert the dataset back to classificationdataset #as

shown in above step.

test_data = ClassificationDataSet(64, 1, nb_classes=10)

for n in range(0, test_data_temp.getLength()):

 test_data.addSample(test_data_temp.getSample(n)[0],

test_data_temp.getSample(n)[1])

training_data = ClassificationDataSet(64, 1, nb_classes=10)

for n in range(0, training_data_temp.getLength()):

 training_data.addSample(training_data_temp.getSample(n)[0],

training_data_temp.getSample(n)[1])

test_data._convertToOneOfMany()

training_data._convertToOneOfMany()

PyBrain

 73

net = buildNetwork(training_data.indim, 64, training_data.outdim,

outclass=SoftmaxLayer) #creating a network wherein the input and output are

used from the training data.

trainer = BackpropTrainer(net, dataset=training_data,

momentum=0.1,learningrate=0.01,verbose=True,weightdecay=0.01) #Training the

Network

trnerr,valerr =

trainer.trainUntilConvergence(dataset=training_data,maxEpochs=10) #Visualizing

the error and validation data

plt.plot(trnerr,'b',valerr,'r')

plt.show()

trainer.trainEpochs(10)

print('Percent Error on

testData:',percentError(trainer.testOnClassData(dataset=test_data),

test_data['class']))

Output

PyBrain

 74

Total error: 0.0432857814358

Total error: 0.0222276374185

Total error: 0.0149012052174

Total error: 0.011876985318

Total error: 0.00939854792853

Total error: 0.00782202445183

Total error: 0.00714707652044

Total error: 0.00606068893793

Total error: 0.00544257958975

Total error: 0.00463929281336

Total error: 0.00441275665294

('train-errors:', '[0.043286 , 0.022228 , 0.014901 , 0.011877 , 0.009399 ,

0.007

822 , 0.007147 , 0.006061 , 0.005443 , 0.004639 , 0.004413]')

PyBrain

 75

('valid-errors:', '[0.074296 , 0.027332 , 0.016461 , 0.014298 , 0.012129 ,

0.009

248 , 0.008922 , 0.007917 , 0.006547 , 0.005883 , 0.006572 , 0.005811]')

Percent Error on testData: 3.34075723830735

