
- SciPy - Home
- SciPy - Introduction
- SciPy - Environment Setup
- SciPy - Basic Functionality
- SciPy - Relationship with NumPy
- SciPy Clusters
- SciPy - Clusters
- SciPy - Hierarchical Clustering
- SciPy - K-means Clustering
- SciPy - Distance Metrics
- SciPy Constants
- SciPy - Constants
- SciPy - Mathematical Constants
- SciPy - Physical Constants
- SciPy - Unit Conversion
- SciPy - Astronomical Constants
- SciPy - Fourier Transforms
- SciPy - FFTpack
- SciPy - Discrete Fourier Transform (DFT)
- SciPy - Fast Fourier Transform (FFT)
- SciPy Integration Equations
- SciPy - Integrate Module
- SciPy - Single Integration
- SciPy - Double Integration
- SciPy - Triple Integration
- SciPy - Multiple Integration
- SciPy Differential Equations
- SciPy - Differential Equations
- SciPy - Integration of Stochastic Differential Equations
- SciPy - Integration of Ordinary Differential Equations
- SciPy - Discontinuous Functions
- SciPy - Oscillatory Functions
- SciPy - Partial Differential Equations
- SciPy Interpolation
- SciPy - Interpolate
- SciPy - Linear 1-D Interpolation
- SciPy - Polynomial 1-D Interpolation
- SciPy - Spline 1-D Interpolation
- SciPy - Grid Data Multi-Dimensional Interpolation
- SciPy - RBF Multi-Dimensional Interpolation
- SciPy - Polynomial & Spline Interpolation
- SciPy Curve Fitting
- SciPy - Curve Fitting
- SciPy - Linear Curve Fitting
- SciPy - Non-Linear Curve Fitting
- SciPy - Input & Output
- SciPy - Input & Output
- SciPy - Reading & Writing Files
- SciPy - Working with Different File Formats
- SciPy - Efficient Data Storage with HDF5
- SciPy - Data Serialization
- SciPy Linear Algebra
- SciPy - Linalg
- SciPy - Matrix Creation & Basic Operations
- SciPy - Matrix LU Decomposition
- SciPy - Matrix QU Decomposition
- SciPy - Singular Value Decomposition
- SciPy - Cholesky Decomposition
- SciPy - Solving Linear Systems
- SciPy - Eigenvalues & Eigenvectors
- SciPy Image Processing
- SciPy - Ndimage
- SciPy - Reading & Writing Images
- SciPy - Image Transformation
- SciPy - Filtering & Edge Detection
- SciPy - Top Hat Filters
- SciPy - Morphological Filters
- SciPy - Low Pass Filters
- SciPy - High Pass Filters
- SciPy - Bilateral Filter
- SciPy - Median Filter
- SciPy - Non - Linear Filters in Image Processing
- SciPy - High Boost Filter
- SciPy - Laplacian Filter
- SciPy - Morphological Operations
- SciPy - Image Segmentation
- SciPy - Thresholding in Image Segmentation
- SciPy - Region-Based Segmentation
- SciPy - Connected Component Labeling
- SciPy Optimize
- SciPy - Optimize
- SciPy - Special Matrices & Functions
- SciPy - Unconstrained Optimization
- SciPy - Constrained Optimization
- SciPy - Matrix Norms
- SciPy - Sparse Matrix
- SciPy - Frobenius Norm
- SciPy - Spectral Norm
- SciPy Condition Numbers
- SciPy - Condition Numbers
- SciPy - Linear Least Squares
- SciPy - Non-Linear Least Squares
- SciPy - Finding Roots of Scalar Functions
- SciPy - Finding Roots of Multivariate Functions
- SciPy - Signal Processing
- SciPy - Signal Filtering & Smoothing
- SciPy - Short-Time Fourier Transform
- SciPy - Wavelet Transform
- SciPy - Continuous Wavelet Transform
- SciPy - Discrete Wavelet Transform
- SciPy - Wavelet Packet Transform
- SciPy - Multi-Resolution Analysis
- SciPy - Stationary Wavelet Transform
- SciPy - Statistical Functions
- SciPy - Stats
- SciPy - Descriptive Statistics
- SciPy - Continuous Probability Distributions
- SciPy - Discrete Probability Distributions
- SciPy - Statistical Tests & Inference
- SciPy - Generating Random Samples
- SciPy - Kaplan-Meier Estimator Survival Analysis
- SciPy - Cox Proportional Hazards Model Survival Analysis
- SciPy Spatial Data
- SciPy - Spatial
- SciPy - Special Functions
- SciPy - Special Package
- SciPy Advanced Topics
- SciPy - CSGraph
- SciPy - ODR
- SciPy Useful Resources
- SciPy - Reference
- SciPy - Quick Guide
- SciPy - Cheatsheet
- SciPy - Useful Resources
- SciPy - Discussion
SciPy - ishermitian() Function
The SciPy ishermitian() function checks for whether the matrix is hermitian or not. The matrix is known to be hermitian if a = a^H is its conjugate transpose.
Checking whether the matrix is hermitian or not is really useful because, for hermitian matrices, all eigenvalues are guaranteed to be real numbers and orthogonal eigenvectors. This is crucial in applications like quantum mechanics, signal processing, and numerical stability in computations.
Syntax
The syntax for the SciPy ishermitian() method is as follows −
.ishermitian(a, atol=1e-8, rtol=1e-5)
Parameters
This method accepts the following parameters −
a ndarray − The input matrix.
atol (float, optional) − Absolute tolerance. Default is 1 x 10^-8.
rtol (float, optional) − Relative tolerance. Default is 1 x 10^-5.
Return Value
Returns True if the matrix 'a' is hermitian, otherwise False.
Example 1
Following is the basic example to check whether the matrices A and B are hermitian. Following is the code −
from scipy.linalg import ishermitian import numpy as np A = np.array([[2, 1+1j], [1-1j, 3]]) print(ishermitian(A)) B = np.array([[2, 1], [2, 3]]) print(ishermitian(B))
When we run above program, it produces following result −
True False
Example 2
In the below code we used absolute tolerance to check whether the matrix C is hermitian. This parameter is useful when the matrices have small floating point errors. Following is the code −
from scipy.linalg import ishermitian import numpy as np C = np.array([[1, 1e-9 + 0j], [1e-9 - 0j, 1]]) print(ishermitian(C, atol=1e-8))
Following is an output of the above code −
True
Example 3
This example demonstrates how one can use a Hermitian matrix in order to determine if all of its eigenvalues are real.
from scipy.linalg import ishermitian, eigvals import numpy as np matrix = np.array([ [2, 1-1j], [1+1j, 3] ]) if ishermitian(matrix): print("The matrix is Hermitian.") eigenvalues = eigvals(matrix) print("Eigenvalues:", eigenvalues) else: print("The matrix is not Hermitian.") is_real = np.allclose(eigenvalues.imag, 0) print(is_real)
Output of the above code is as follows −
The matrix is Hermitian. Eigenvalues: [1.-2.52702567e-16j 4.-1.91386643e-16j] True