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About the Tutorial 

Theano is a Python library that lets you define mathematical expressions used in Machine 

Learning, optimize these expressions and evaluate those very efficiently by decisively 

using GPUs in critical areas. It can rival typical full C-implementations in most of the cases.  

   

Audience 

This tutorial is designed to help all those learners who are aiming to develop Deep Learning 

Projects.  

Prerequisites 

Before you proceed with this tutorial, prior exposure to Python, NumPy, Neural Networks, 

and Deep Learning is necessary.  

 

Copyright & Disclaimer 

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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Have you developed Machine Learning models in Python? Then, obviously you know the 

intricacies in developing these models. The development is typically a slow process taking 

hours and days of computational power.  

The Machine Learning model development requires lot of mathematical computations. 

These generally require arithmetic computations especially large matrices of multiple 

dimensions. These days we use Neural Networks rather than the traditional statistical 

techniques for developing Machine Learning applications. The Neural Networks need to be 

trained over a huge amount of data. The training is done in batches of data of reasonable 

size. Thus, the learning process is iterative. Thus, if the computations are not done 

efficiently, training the network can take several hours or even days. Thus, the 

optimization of the executable code is highly desired. And that is what exactly Theano 

provides.  

Theano is a Python library that lets you define mathematical expressions used in Machine 

Learning, optimize these expressions and evaluate those very efficiently by decisively 

using GPUs in critical areas. It can rival typical full C-implementations in most of the cases.  

Theano was written at the LISA lab with the intention of providing rapid development of 

efficient machine learning algorithms. It is released under a BSD license.  

In this tutorial, you will learn to use Theano library.  

 

  

1. Theano — Introduction 
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Theano can be installed on Windows, MacOS, and Linux. The installation in all the cases is 

trivial. Before you install Theano, you must install its dependencies. The following is the 

list of dependencies: 

 Python 

 NumPy: Required  

 SciPy: Required only for Sparse Matrix and special functions 

 BLAS: Provides standard building blocks for performing basic vector and matrix 

operations 

The optional packages that you may choose to install depending on your needs are: 

 nose: To run Theano’s test-suite 

 Sphinx: For building documentation 

 Graphiz and pydot: To handle graphics and images 

 NVIDIA CUDA drivers: Required for GPU code generation/execution 

 libgpuarray: Required for GPU/CPU code generation on CUDA and OpenCL devices 

We shall discuss the steps to install Theano in MacOS.   

MacOS Installation 

To install Theano and its dependencies, you use pip from the command line as follows. 

These are the minimal dependencies that we are going to need in this tutorial.  

$ pip install Theano 

$ pip install numpy 

$ pip install scipy 

$ pip install pydot 

You also need to install OSx command line developer tool using the following command: 

$ xcode-select --install 

You will see the following screen. Click on the Install button to install the tool.  
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On successful installation, you will see the success message on the console.  

Testing the Installation 

After the installation completes successfully, open a new notebook in the Anaconda 

Jupyter. In the code cell, enter the following Python script: 

import theano 

from theano import tensor 

 

a = tensor.dscalar() 

b = tensor.dscalar() 

c = a + b 

 

f = theano.function([a,b], c) 

d = f(1.5, 2.5) 

print (d) 

 

Execute the script and you should see the following output: 

4.0 

The screenshot of the execution is shown below for your quick reference: 
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If you get the above output, your Theano installation is successful. If not, follow the debug 

instructions on Theano download page to fix the issues. 

What is Theano? 

Now that you have successfully installed Theano, let us first try to understand what is 

Theano? Theano is a Python library. It lets you define, optimize, and evaluate 

mathematical expressions, especially the ones which are used in Machine Learning Model 

development. Theano itself does not contain any pre-defined ML models; it just facilitates 

its development. It is especially useful while dealing with multi-dimensional arrays. It 

seamlessly integrates with NumPy, which is a fundamental and widely used package for 

scientific computations in Python.  

Theano facilitates defining mathematical expressions used in ML development. Such 

expressions generally involve Matrix Arithmetic, Differentiation, Gradient Computation, 

and so on.  

Theano first builds the entire Computational Graph for your model. It then compiles it into 

highly efficient code by applying several optimization techniques on the graph. The 

compiled code is injected into Theano runtime by a special operation called function 

available in Theano. We execute this function repetitively to train a neural network. The 

training time is substantially reduced as compared to using pure Python coding or even a 

full C implementation.  

We shall now understand the process of Theano development. Let us begin with how to 

define a mathematical expression in Theano.  
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Let us begin our journey of Theano by defining and evaluating a trivial expression in 

Theano. Consider the following trivial expression that adds two scalars: 

c = a + b 

Where a, b are variables and c is the expression output. In Theano, defining and 

evaluating even this trivial expression is tricky.  

Let us understand the steps to evaluate the above expression.  

Importing Theano 

First, we need to import Theano library in our program, which we do using the following 

statement: 

from theano import * 

Rather than importing the individual packages, we have used * in the above statement to 

include all packages from the Theano library.  

Declaring Variables 

Next, we will declare a variable called a using the following statement: 

a = tensor.dscalar() 

The dscalar method declares a decimal scalar variable. The execution of the above 

statement creates a variable called a in your program code. Likewise, we will create 

variable b using the following statement: 

b = tensor.dscalar() 

Defining Expression 

Next, we will define our expression that operates on these two variables a and b.  

c = a + b 

In Theano, the execution of the above statement does not perform the scalar addition of 

the two variables a and b. 

Defining Theano Function 

To evaluate the above expression, we need to define a function in Theano as follows: 

 

3. Theano ― A Trivial Theano Expression 
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f = theano.function([a,b], c) 

The function function takes two arguments, the first argument is an input to the function 

and the second one is its output. The above declaration states that the first argument is 

of type array consisting of two elements a and b. The output is a scalar unit called c. This 

function will be referenced with the variable name f in our further code.  

Invoking Theano Function 

The call to the function f is made using the following statement: 

d = f(3.5, 5.5) 

The input to the function is an array consisting of two scalars: 3.5 and 5.5. The output of 

execution is assigned to the scalar variable d. To print the contents of d, we will use the 

print statement: 

print (d) 

The execution would cause the value of d to be printed on the console, which is 9.0 in this 

case.  

Full Program Listing 

The complete program listing is given here for your quick reference: 

from theano import * 

 

a = tensor.dscalar() 

b = tensor.dscalar() 

c = a + b 

 

f = theano.function([a,b], c) 

d = f(3.5, 5.5) 

print (d) 

Execute the above code and you will see the output as 9.0. The screen shot is shown here: 
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Now, let us discuss a slightly more complex example that computes the multiplication of 

two matrices.  
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We will compute a dot product of two matrices. The first matrix is of dimension 2 x 3 and 

the second one is of dimension 3 x 2. The matrices that we used as input and their product 

are expressed here: 

 

Declaring Variables 

To write a Theano expression for the above, we first declare two variables to represent 

our matrices as follows: 

a = tensor.dmatrix() 

b = tensor.dmatrix() 

The dmatrix is the Type of matrices for doubles. Note that we do not specify the matrix 

size anywhere. Thus, these variables can represent matrices of any dimension.  

Defining Expression 

To compute the dot product, we used the built-in function called dot as follows: 

c = tensor.dot(a,b) 

The output of multiplication is assigned to a matrix variable called c.  

Defining Theano Function 

Next, we define a function as in the earlier example to evaluate the expression. 

f = theano.function([a,b], c) 

Note that the input to the function are two variables a and b which are of matrix type. The 

function output is assigned to variable c which would automatically be of matrix type.  

Invoking Theano Function 

We now invoke the function using the following statement: 

d = f([[0, -1, 2], [4, 11, 2]], [[3, -1],[1,2], [6,1]]) 

4. Theano — Expression for Matrix 
Multiplication 
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The two variables in the above statement are NumPy arrays. You may explicitly define 

NumPy arrays as shown here: 

f(numpy.array([[0, -1, 2], [4, 11, 2]]),  

  numpy.array([[3, -1],[1,2], [6,1]])) 

After d is computed we print its value: 

print (d) 

You will see the following output on the output: 

[[11. 0.] 

 [25. 20.]] 

Full Program Listing 

The complete program listing is given here: 

from theano import * 

 

a = tensor.dmatrix() 

b = tensor.dmatrix() 

c = tensor.dot(a,b) 

 

f = theano.function([a,b], c) 

d = f([[0, -1, 2],[4, 11, 2]], [[3, -1],[1,2],[6,1]]) 

print (d) 

The screenshot of the program execution is shown here: 
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From the above two examples, you may have noticed that in Theano we create an 

expression which is eventually evaluated using the Theano function. Theano uses 

advanced optimization techniques to optimize the execution of an expression. To visualize 

the computation graph, Theano provides a printing package in its library.  

Symbolic Graph for Scalar Addition 

To see the computation graph for our scalar addition program, use the printing library as 

follows: 

theano.printing.pydotprint(f, outfile="scalar_addition.png", 

var_with_name_simple=True) 

When you execute this statement, a file called scalar_addition.png will be created on 

your machine. The saved computation graph is displayed here for your quick reference: 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Theano ― Computational Graph 
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The complete program listing to generate the above image is given below: 

from theano import * 

 

a = tensor.dscalar() 

b = tensor.dscalar() 

c = a + b 

 

f = theano.function([a,b], c) 

theano.printing.pydotprint(f, outfile="scalar_addition.png", 

var_with_name_simple=True) 

Symbolic Graph for Matrix Multiplier 

Now, try creating the computation graph for our matrix multiplier. The complete listing for 

generating this graph is given below: 

from theano import * 

 

a = tensor.dmatrix() 

b = tensor.dmatrix() 

c = tensor.dot(a,b) 

f = theano.function([a,b], c) 

theano.printing.pydotprint(f, outfile="matrix_dot_product.png", 

var_with_name_simple=True) 

The generated graph is shown here: 
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Complex Graphs 

In larger expressions, the computational graphs could be very complex. One such graph 

taken from Theano documentation is shown here: 
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To understand the working of Theano, it is important to first know the significance of these 

computational graphs. With this understanding, we shall know the importance of Theano.  

Why Theano? 

By looking at the complexity of the computational graphs, you will now be able to 

understand the purpose behind developing Theano. A typical compiler would provide local 

optimizations in the program as it never looks at the entire computation as a single unit.  

Theano implements very advanced optimization techniques to optimize the full 

computational graph. It combines the aspects of Algebra with aspects of an optimizing 

compiler. A part of the graph may be compiled into C-language code. For repeated 

calculations, the evaluation speed is critical and Theano meets this purpose by generating 

a very efficient code.  
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Now, that you have understood the basics of Theano, let us begin with the different data 

types available to you for creating your expressions. The following table gives you a partial 

list of data types defined in Theano. 

Data type Theano type 

Byte bscalar, bvector, bmatrix, brow, bcol, btensor3, 

btensor4, btensor5, btensor6, btensor7 

16-bit integers wscalar, wvector, wmatrix, wrow, wcol, wtensor3, 

wtensor4, wtensor5, wtensor6, wtensor7 

32-bit integers iscalar, ivector, imatrix, irow, icol, itensor3, 

itensor4, itensor5, itensor6, itensor7 

64-bit integers lscalar, lvector, lmatrix, lrow, lcol, ltensor3, 

ltensor4, ltensor5, ltensor6, ltensor7 

float fscalar, fvector, fmatrix, frow, fcol, ftensor3, 

ftensor4, ftensor5, ftensor6, ftensor7 

double dscalar, dvector, dmatrix, drow, dcol, dtensor3, 

dtensor4, dtensor5, dtensor6, dtensor7 

complex cscalar, cvector, cmatrix, crow, ccol, ctensor3, 

ctensor4, ctensor5, ctensor6, ctensor7  

 

The above list is not exhaustive and the reader is referred to the tensor creation document 

for a complete list.  

I will now give you a few examples of how to create variables of various kinds of data in 

Theano.  

Scalar 

To construct a scalar variable you would use the syntax: 

x = theano.tensor.scalar ('x') 

x = 5.0 

print (x) 

Output 

5.0 

6. Theano — Data Types 
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One-dimensional Array 

To create a one dimensional array, use the following declaration: 

f = theano.tensor.vector 

f = (2.0, 5.0, 3.0) 

print (f)f = theano.tensor.vector 

f = (2.0, 5.0, 3.0) 

print (f) 

print (f[0]) 

print (f[2]) 

Output 

(2.0, 5.0, 3.0) 

2.0 

3.0 

If you do f[3] it would generate an index out of range error as shown here: 

print f([3]) 

Output 

IndexError                                Traceback (most recent call last) 

<ipython-input-13-2a9c2a643c3a> in <module> 

      4 print (f[0]) 

      5 print (f[2]) 

----> 6 print (f[3]) 

 

IndexError: tuple index out of range 

Two-dimensional Array 

To declare a two-dimensional array you would use the following code snippet: 

m = theano.tensor.matrix 

m = ([2,3], [4,5], [2,4]) 

print (m[0]) 

print (m[1][0]) 

Output 

[2, 3] 
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4 

5-dimensional Array 

To declare a 5-dimensional array, use the following syntax: 

m5 = theano.tensor.tensor5 

m5 = ([0,1,2,3,4], [5,6,7,8,9], [10,11,12,13,14]) 

print (m5[1]) 

print (m5[2][3]) 

Output 

[5, 6, 7, 8, 9] 

13 

You may declare a 3-dimensional array by using the data type tensor3 in place of 

tensor5, a 4-dimensional array using the data type tensor4, and so on up to tensor7.  

Plural Constructors 

Sometimes, you may want to create variables of the same type in a single declaration. 

You can do so by using the following syntax: 

from theano.tensor import * 

x, y, z = dmatrices('x', 'y', 'z') 

x = ([1,2],[3,4],[5,6]) 

y = ([7,8],[9,10],[11,12]) 

z = ([13,14],[15,16],[17,18]) 

print (x[2]) 

print (y[1]) 

print (z[0]) 

Output 

[5, 6] 

[9, 10] 

[13, 14] 
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In the previous chapter, while discussing the data types, we created and used Theano 

variables. To reiterate, we would use the following syntax to create a variable in Theano: 

x = theano.tensor.fvector('x') 

In this statement, we have created a variable x of type vector containing 32-bit floats. We 

are also naming it as x. The names are generally useful for debugging.  

To declare a vector of 32-bit integers, you would use the following syntax: 

i32 = theano.tensor.ivector 

Here, we do not specify a name for the variable.  

To declare a three-dimensional vector consisting of 64-bit floats, you would use the 

following declaration: 

f64 = theano.tensor.dtensor3 

The various types of constructors along with their data types are listed in the table below: 

Constructor Data type Dimensions 

fvector float32 1 

ivector int32 1 

fscalar float32 0 

fmatrix float32 2 

ftensor3 float32 3 

dtensor3 float64 3 

 

You may use a generic vector constructor and specify the data type explicitly as follows: 

x = theano.tensor.vector ('x', dtype=int32) 

In the next chapter, we will learn how to create shared variables.  

 

  

7. Theano ― Variables 
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Many a times, you would need to create variables which are shared between different 

functions and also between multiple calls to the same function. To cite an example, while 

training a neural network you create weights vector for assigning a weight to each feature 

under consideration. This vector is modified on every iteration during the network training. 

Thus, it has to be globally accessible across the multiple calls to the same function. So we 

create a shared variable for this purpose. Typically, Theano moves such shared variables 

to the GPU, provided one is available. This speeds up the computation.  

You create a shared variable you use the following syntax: 

import numpy 

W = theano.shared(numpy.asarray([0.1, 0.25, 0.15, 0.3]), 'W') 

Here the NumPy array consisting of four floating point numbers is created. To set/get the 

W value you would use the following code snippet: 

import numpy 

W = theano.shared(numpy.asarray([0.1, 0.25, 0.15, 0.3]), 'W') 

print ("Original: ", W.get_value()) 

print ("Setting new values (0.5, 0.2, 0.4, 0.2)") 

W.set_value([0.5, 0.2, 0.4, 0.2]) 

print ("After modifications:", W.get_value()) 

Output 

Original:  [0.1  0.25 0.15 0.3 ] 

Setting new values (0.5, 0.2, 0.4, 0.2) 

After modifications: [0.5 0.2 0.4 0.2] 

  

8. Theano — Shared Variables 
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Theano function acts like a hook for interacting with the symbolic graph. A symbolic graph 

is compiled into a highly efficient execution code. It achieves this by restructuring 

mathematical equations to make them faster. It compiles some parts of the expression 

into C language code. It moves some tensors to the GPU, and so on.  

The efficient compiled code is now given as an input to the Theano function. When you 

execute the Theano function, it assigns the result of computation to the variables 

specified by us. The type of optimization may be specified as FAST_COMPILE or FAST_RUN. 

This is specified in the environment variable THEANO_FLAGS.  

A Theano function is declared using the following syntax: 

f = theano.function ([x], y) 

The first parameter [x] is the list of input variables and the second parameter y is the list 

of output variables.   

Having now understood the basics of Theano, let us begin Theano coding with a trivial 

example. 

  

9. Theano ― Functions 
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Theano is quite useful in training neural networks where we have to repeatedly calculate 

cost, and gradients to achieve an optimum. On large datasets, this becomes 

computationally intensive. Theano does this efficiently due to its internal optimizations of 

the computational graph that we have seen earlier.  

Problem Statement 

We shall now learn how to use Theano library to train a network. We will take a simple 

case where we start with a four feature dataset. We compute the sum of these features 

after applying a certain weight (importance) to each feature.  

The goal of the training is to modify the weights assigned to each feature so that the sum 

reaches a target value of 100.  

sum = f1 * w1 + f2 * w2 + f3 * w3 + f4 * w4 

Where f1, f2, ...  are the feature values and w1, w2, ... are the weights.  

Let me quantize the example for a better understanding of the problem statement. We will 

assume an initial value of 1.0 for each feature and we will take w1 equals 0.1, w2 equals 

0.25, w3 equals 0.15, and w4 equals 0.3. There is no definite logic in assigning the 

weight values, it is just our intuition. Thus, the initial sum is as follows:  

sum = 1.0 * 0.1 + 1.0 * 0.25 + 1.0 * 0.15 + 1.0 * 0.3  

Which sums to 0.8. Now, we will keep modifying the weight assignment so that this sum 

approaches 100. The current resultant value of 0.8 is far away from our desired target 

value of 100. In Machine Learning terms, we define cost as the difference between the 

target value minus the current output value, typically squared to blow up the error. We 

reduce this cost in each iteration by calculating the gradients and updating our weights 

vector.  

Let us see how this entire logic is implemented in Theano.  

Declaring Variables 

We first declare our input vector x as follows: 

x = tensor.fvector('x') 

Where x is a single dimensional array of float values.  

We define a scalar target variable as given below: 

target = tensor.fscalar('target') 

 

10. Theano — Trivial Training Example 
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Next, we create a weights tensor W with the initial values as discussed above: 

W = theano.shared(numpy.asarray([0.1, 0.25, 0.15, 0.3]), 'W') 

Defining Theano Expression 

We now calculate the output using the following expression: 

y = (x * W).sum() 

Note that in the above statement x and W are the vectors and not simple scalar variables. 

We now calculate the error (cost) with the following expression: 

cost = tensor.sqr(target - y) 

The cost is the difference between the target value and the current output, squared.  

To calculate the gradient which tells us how far we are from the target, we use the built-

in grad method as follows: 

gradients = tensor.grad(cost, [W]) 

We now update the weights vector by taking a learning rate of 0.1 as follows: 

W_updated = W - (0.1 * gradients[0]) 

Next, we need to update our weights vector using the above values. We do this in the 

following statement: 

updates = [(W, W_updated)] 

Defining/Invoking Theano Function 

Lastly, we define a function in Theano to compute the sum.  

f = function([x, target], y, updates=updates) 

To invoke the above function a certain number of times, we create a for loop as follows: 

for i in range(10): 

    output = f([1.0, 1.0, 1.0, 1.0], 100.0) 

As said earlier, the input to the function is a vector containing the initial values for the four 

features - we assign the value of 1.0 to each feature without any specific reason. You may 

assign different values of your choice and check if the function ultimately converges. We 

will print the values of the weight vector and the corresponding output in each iteration. 

It is shown in the below code: 
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print ("iteration: ", i) 

print ("Modified Weights: ", W.get_value()) 

print ("Output: ", output) 

Full Program Listing 

The complete program listing is reproduced here for your quick reference: 

from theano import * 

import numpy 

  

x = tensor.fvector('x') 

target = tensor.fscalar('target') 

  

W = theano.shared(numpy.asarray([0.1, 0.25, 0.15, 0.3]), 'W') 

print ("Weights: ", W.get_value()) 

y = (x * W).sum() 

  

cost = tensor.sqr(target - y) 

gradients = tensor.grad(cost, [W]) 

W_updated = W - (0.1 * gradients[0]) 

updates = [(W, W_updated)] 

  

f = function([x, target], y, updates=updates) 

  

for i in range(10): 

    output = f([1.0, 1.0, 1.0, 1.0], 100.0) 

    print ("iteration: ", i) 

    print ("Modified Weights: ", W.get_value()) 

    print ("Output: ", output) 

When you run the program you will see the following output: 

Weights:  [0.1  0.25 0.15 0.3 ] 

iteration:  0 

Modified Weights:  [19.94 20.09 19.99 20.14] 

Output:  0.8 

iteration:  1 

Modified Weights:  [23.908 24.058 23.958 24.108] 
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Output:  80.16000000000001 

iteration:  2 

Modified Weights:  [24.7016 24.8516 24.7516 24.9016] 

Output:  96.03200000000001 

iteration:  3 

Modified Weights:  [24.86032 25.01032 24.91032 25.06032] 

Output:  99.2064 

iteration:  4 

Modified Weights:  [24.892064 25.042064 24.942064 25.092064] 

Output:  99.84128 

iteration:  5 

Modified Weights:  [24.8984128 25.0484128 24.9484128 25.0984128] 

Output:  99.968256 

iteration:  6 

Modified Weights:  [24.89968256 25.04968256 24.94968256 25.09968256] 

Output:  99.9936512 

iteration:  7 

Modified Weights:  [24.89993651 25.04993651 24.94993651 25.09993651] 

Output:  99.99873024 

iteration:  8 

Modified Weights:  [24.8999873 25.0499873 24.9499873 25.0999873] 

Output:  99.99974604799999 

iteration:  9 

Modified Weights:  [24.89999746 25.04999746 24.94999746 25.09999746] 

Output:  99.99994920960002 

Observe that after four iterations, the output is 99.96 and after five iterations, it is 99.99, 

which is close to our desired target of 100.0.  

Depending on the desired accuracy, you may safely conclude that the network is trained 

in 4 to 5 iterations. After the training completes, look up the weights vector, which after 

5 iterations takes the following values: 

iteration:  5 

Modified Weights:  [24.8984128 25.0484128 24.9484128 25.0984128] 

You may now use these values in your network for deploying the model.  
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The Machine Learning model building involves intensive and repetitive computations 

involving tensors. These require intensive computing resources. As a regular compiler 

would provide the optimizations at the local level, it does not generally produce a fast 

execution code.  

Theano first builds a computational graph for the entire computation. As the whole picture 

of computation is available as a single image during compilation, several optimization 

techniques can be applied during pre-compilation and that’s what exactly Theano does. It 

restructures the computational graph, partly converts it into C, moves shared variables to 

GPU, and so on to generate a very fast executable code. The compiled code is then 

executed by a Theano function which just acts as a hook for injecting the compiled code 

into the runtime. Theano has proved its credentials and is widely accepted in both 

academics and industry.  

 

11. Theano ― Conclusion 


