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About the Tutorial 

A time series is a sequence of observations over a certain period. The simplest example 

of a time series that all of us come across on a day to day basis is the change in 

temperature throughout the day or week or month or year.  

The analysis of temporal data is capable of giving us useful insights on how a variable 

changes over time. 

This tutorial will teach you how to analyze and forecast time series data with the help of 

various statistical and machine learning models in elaborate and easy to understand way! 

Audience 

This tutorial is for the inquisitive minds who are looking to understand time series and 

time series forecasting models from scratch. At the end of this tutorial you will have a 

good understanding on time series modelling. 

Prerequisites 

This tutorial only assumes a preliminary understanding of Python language. Although this 

tutorial is self-contained, it will be useful if you have understanding of statistical 

mathematics. 

If you are new to either Python or Statistics, we suggest you to pick up a tutorial based 

on these subjects first before you embark on your journey with Time Series. 

Copyright & Disclaimer 

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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A time series is a sequence of observations over a certain period. A univariate time series 

consists of the values taken by a single variable at periodic time instances over a period, 

and a multivariate time series consists of the values taken by multiple variables at the 

same periodic time instances over a period. The simplest example of a time series that all 

of us come across on a day to day basis is the change in temperature throughout the day 

or week or month or year.  

The analysis of temporal data is capable of giving us useful insights on how a variable 

changes over time, or how it depends on the change in the values of other variable(s). 

This relationship of a variable on its previous values and/or other variables can be analyzed 

for time series forecasting and has numerous applications in artificial intelligence. 
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A basic understanding of any programming language is essential for a user to work with 

or develop machine learning problems. A list of preferred programming languages for 

anyone who wants to work on machine learning is given below: 

Python 

It is a high-level interpreted programming language, fast and easy to code. Python can 

follow either procedural or object-oriented programming paradigms. The presence of a 

variety of libraries makes implementation of complicated procedures simpler. In this 

tutorial, we will be coding in Python and the corresponding libraries useful for time series 

modelling will be discussed in the upcoming chapters. 

R 

Similar to Python, R is an interpreted multi-paradigm language, which supports statistical 

computing and graphics. The variety of packages makes it easier to implement machine 

learning modelling in R. 

Java 

It is an interpreted object-oriented programming language, which is widely famous for a 

large range of package availability and sophisticated data visualization techniques. 

C/C++ 

These are compiled languages, and two of the oldest programming languages. These 

languages are often preferred to incorporate ML capabilities in the already existing 

applications as they allow you to customize the implementation of ML algorithms easily. 

MATLAB 

MATrix LABoratory is a multi-paradigm language which gives functioning to work with 

matrices. It allows mathematical operations for complex problems. It is primarily used for 

numerical operations but some packages also allow the graphical multi-domain simulation 

and model-based design. 

Other preferred programming languages for machine learning problems include Javascript, 

LISP, Prolog, SQL, Scala, Julia, SAS etc. 

 

  

 

 

 

 

 

2. Time Series – Programming Languages 



Time Series 

 

       

3 

 

Python has an established popularity among individuals who perform machine learning 

because of its easy-to-write and easy-to-understand code structure as well as a wide 

variety of open source libraries. A few of such open source libraries that we will be using 

in the coming chapters have been introduced below. 

NumPy 

Numerical Python is a library used for scientific computing. It works on an N-dimensional 

array object and provides basic mathematical functionality such as size, shape, mean, 

standard deviation, minimum, maximum as well as some more complex functions such as 

linear algebraic functions and Fourier transform. You will learn more about these as we 

move ahead in this tutorial. 

Pandas 

This library provides highly efficient and easy-to-use data structures such as series, 

dataframes and panels. It has enhanced Python’s functionality from mere data collection 

and preparation to data analysis. The two libraries, Pandas and NumPy, make any 

operation on small to very large dataset very simple. To know more about these functions, 

follow this tutorial. 

SciPy 

Science Python is a library used for scientific and technical computing. It provides 

functionalities for optimization, signal and image processing, integration, interpolation and 

linear algebra. This library comes handy while performing machine learning. We will 

discuss these functionalities as we move ahead in this tutorial. 

Scikit Learn 

This library is a SciPy Toolkit widely used for statistical modelling, machine learning and 

deep learning, as it contains various customizable regression, classification and clustering 

models. It works well with Numpy, Pandas and other libraries which makes it easier to 

use. 

Statsmodels 

Like Scikit Learn, this library is used for statistical data exploration and statistical 

modelling. It also operates well with other Python libraries. 

Matplotlib 

This library is used for data visualization in various formats such as line plot, bar graph, 

heat maps, scatter plots, histogram etc. It contains all the graph related functionalities 

required from plotting to labelling. We will discuss these functionalities as we move ahead 

in this tutorial. 

These libraries are very essential to start with machine learning with any sort of data.  

 

3. Time Series – Python Libraries 
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Beside the ones discussed above, another library especially significant to deal with time 

series is: 

Datetime 

This library, with its two modules – datetime and calendar, provides all necessary datetime 

functionality for reading, formatting and manipulating time. 

We shall be using these libraries in the coming chapters. 
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Time Series is a sequence of observations indexed in equi-spaced time intervals. Hence, 

the order and continuity should be maintained in any time series.  

The dataset we will be using is a multi-variate time series having hourly data for 

approximately one year, for air quality in a significantly polluted Italian city. The dataset 

can be downloaded from the link given below: 

http://archive.ics.uci.edu/ml/datasets/air+quality 

It is necessary to make sure that: 

 The time series is equally spaced, and 

 There are no redundant values or gaps in it.  

In case the time series is not continuous, we can upsample or downsample it. 

Showing df.head() 

In [122]: 

import pandas 

In [123]: 

df = pandas.read_csv("AirQualityUCI.csv", sep = ";", decimal = ",") 

df = df.iloc[ : , 0:14] 

In [124]: 

len(df) 

Out[124]: 

9471 

In [125]: 

df.head() 

Out[125]: 

 

4. Time Series – Data Processing and Visualization  
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For preprocessing the time series, we make sure there are no NaN(NULL) values in the 

dataset; if there are, we can replace them with either 0 or average or preceding or 

succeeding values. Replacing is a preferred choice over dropping so that the continuity of 

the time series is maintained. However, in our dataset the last few values seem to be NULL 

and hence dropping will not affect the continuity. 

Dropping NaN(Not-a-Number) 

In [126]: 

df.isna().sum() 

Out[126]: 

Date             114 

Time             114 

CO(GT)           114 

PT08.S1(CO)      114 

NMHC(GT)         114 

C6H6(GT)         114 

PT08.S2(NMHC)    114 

NOx(GT)          114 

PT08.S3(NOx)     114 

NO2(GT)          114 

PT08.S4(NO2)     114 

PT08.S5(O3)      114 

T                114 

RH               114 

dtype: int64 

In [127]: 

df = df[df['Date'].notnull()] 

In [128]: 

df.isna().sum() 

Out[128]: 

Date             0 

Time             0 

CO(GT)           0 

PT08.S1(CO)      0 

NMHC(GT)         0 
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C6H6(GT)         0 

PT08.S2(NMHC)    0 

NOx(GT)          0 

PT08.S3(NOx)     0 

NO2(GT)          0 

PT08.S4(NO2)     0 

PT08.S5(O3)      0 

T                0 

RH               0 

dtype: int64 

Time Series are usually plotted as line graphs against time. For that we will now combine 

the date and time column and convert it into a datetime object from strings. This can be 

accomplished using the datetime library.  

Converting to datetime object 

In [129]: 

df['DateTime'] = (df.Date) + ' ' + (df.Time) 

print (type(df.DateTime[0])) 

<class 'str'> 

In [130]: 

import datetime 

 

df.DateTime = df.DateTime.apply(lambda x: datetime.datetime.strptime(x, 

'%d/%m/%Y %H.%M.%S')) 

print (type(df.DateTime[0])) 

 <class 'pandas._libs.tslibs.timestamps.Timestamp'> 

Let us see how some variables like temperature changes with change in time. 

Showing plots 

In [131]: 

df.index = df.DateTime 

In [132]: 

import matplotlib.pyplot as plt 

plt.plot(df['T']) 
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Out[132]: 

[<matplotlib.lines.Line2D at 0x1eaad67f780>] 

 
In [208]: 

plt.plot(df['C6H6(GT)']) 

Out[208]: 

[<matplotlib.lines.Line2D at 0x1eaaeedff28>] 

Box-plots are another useful kind of graphs that allow you to condense a lot of information 

about a dataset into a single graph. It shows the mean, 25% and 75% quartile and outliers 

of one or multiple variables. In the case when number of outliers is few and is very distant 

from the mean, we can eliminate the outliers by setting them to mean value or 75% 

quartile value. 

Showing Boxplots  

In [134]: 

plt.boxplot(df[['T','C6H6(GT)']].values) 

Out[134]: 

{'whiskers': [<matplotlib.lines.Line2D at 0x1eaac16de80>, 

   <matplotlib.lines.Line2D at 0x1eaac16d908>, 

   <matplotlib.lines.Line2D at 0x1eaac177a58>, 

   <matplotlib.lines.Line2D at 0x1eaac177cf8>], 

   'caps': [<matplotlib.lines.Line2D at 0x1eaac16d2b0>, 

   <matplotlib.lines.Line2D at 0x1eaac16d588>, 

   <matplotlib.lines.Line2D at 0x1eaac1a69e8>, 

   <matplotlib.lines.Line2D at 0x1eaac1a64a8>], 
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   'boxes': [<matplotlib.lines.Line2D at 0x1eaac16dc50>, 

   <matplotlib.lines.Line2D at 0x1eaac1779b0>], 

   'medians': [<matplotlib.lines.Line2D at 0x1eaac16d4a8>, 

   <matplotlib.lines.Line2D at 0x1eaac1a6c50>], 

   'fliers': [<matplotlib.lines.Line2D at 0x1eaac177dd8>, 

   <matplotlib.lines.Line2D at 0x1eaac1a6c18>], 

   'means': []} 
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Introduction 

A time series has 4 components as given below: 

 Level: It is the mean value around which the series varies. 

 Trend: It is the increasing or decreasing behavior of a variable with time. 

 Seasonality: It is the cyclic behavior of time series. 

 Noise: It is the error in the observations added due to environmental factors. 

Time Series Modeling Techniques 

To capture these components, there are a number of popular time series modelling 

techniques. This section gives a brief introduction of each technique, however we will 

discuss about them in detail in the upcoming chapters:  

Naïve Methods 

These are simple estimation techniques, such as the predicted value is given the value 

equal to mean of preceding values of the time dependent variable, or previous actual 

value. These are used for comparison with sophisticated modelling techniques. 

Auto Regression 

Auto regression predicts the values of future time periods as a function of values at 

previous time periods. Predictions of auto regression may fit the data better than that of 

naïve methods, but it may not be able to account for seasonality.  

ARIMA Model 

An auto-regressive integrated moving-average models the value of a variable as a linear 

function of previous values and residual errors at previous time steps of a stationary time 

series. However, the real world data may be non-stationary and have seasonality, thus 

Seasonal-ARIMA and Fractional-ARIMA were developed.  ARIMA works on univariate time 

series, to handle multiple variables VARIMA was introduced. 

Exponential Smoothing 

It models the value of a variable as an exponential weighted linear function of previous 

values. This statistical model can handle trend and seasonality as well. 

LSTM 

Long Short-Term Memory model (LSTM) is a recurrent neural network which is used for 

time series to account for long term dependencies. It can be trained with large amount of 

data to capture the trends in multi-variate time series. 

 

5. Time Series – Modeling  
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The said modelling techniques are used for time series regression. In the coming chapters, 

let us now explore all these one by one. 
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Introduction 

Any statistical or machine learning model has some parameters which greatly influence 

how the data is modeled. For example, ARIMA has p, d, q values. These parameters are 

to be decided such that the error between actual values and modeled values is minimum. 

Parameter calibration is said to be the most crucial and time-consuming task of model 

fitting. Hence, it is very essential for us to choose optimal parameters.  

Methods for Calibration of Parameters 

There are various ways to calibrate parameters. This section talks about some of them in 

detail.  

Hit-and-try 

One common way of calibrating models is hand calibration, where you start by visualizing 

the time-series and intuitively try some parameter values and change them over and over 

until you achieve a good enough fit. It requires a good understanding of the model we are 

trying. For ARIMA model, hand calibration is done with the help of auto-correlation plot for 

‘p’ parameter, partial auto-correlation plot for ‘q’ parameter and ADF-test to confirm the 

stationarity of time-series and setting ‘d’ parameter. We will discuss all these in detail in 

the coming chapters. 

Grid Search 

Another way of calibrating models is by grid search, which essentially means you try 

building a model for all possible combinations of parameters and select the one with 

minimum error. This is time-consuming and hence is useful when number of parameters 

to be calibrated and range of values they take are fewer as this involves multiple nested 

for loops.   

Genetic Algorithm 

Genetic algorithm works on the biological principle that a good solution will eventually 

evolve to the most ‘optimal’ solution. It uses biological operations of mutation, cross-over 

and selection to finally reach to an optimal solution. 

For further knowledge you can read about other parameter optimization techniques like 

Bayesian optimization and Swarm optimization. 

 

 

 

 

 

6. Time Series – Parameter Calibration 



Time Series 

 

       

13 

 

Introduction 

Naïve Methods such as assuming the predicted value at time ‘t’ to be the actual value of 

the variable at time ‘t-1’ or rolling mean of series, are used to weigh how well do the 

statistical models and machine learning models can perform and emphasize their need. 

In this chapter, let us try these models on one of the features of our time-series data. 

First we shall see the mean of the ‘temperature’ feature of our data and the deviation 

around it. It is also useful to see maximum and minimum temperature values. We can use 

the functionalities of numpy library here.  

Showing statistics 

In [135]: 

import numpy 

print ('Mean: ',numpy.mean(df['T']), '; Standard Deviation: 

',numpy.std(df['T']),'; \nMaximum Temperature: ',max(df['T']),'; Minimum 

Temperature: ',min(df['T'])) 

We have the statistics for all 9357 observations across equi-spaced timeline which are 

useful for us to understand the data. 

Now we will try the first naïve method, setting the predicted value at present time equal 

to actual value at previous time and calculate the root mean squared error(RMSE) for it to 

quantify the performance of this method. 

Showing 1st naïve method 

In [136]: 

df['T'] 

df['T_t-1'] = df['T'].shift(1) 

In [137]: 

df_naive = df[['T','T_t-1']][1:] 

In [138]: 

from sklearn import metrics 

from math import sqrt 

 

true = df_naive['T'] 

7. Time Series – Naïve Methods 
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prediction = df_naive['T_t-1'] 

error = sqrt(metrics.mean_squared_error(true,prediction)) 

print ('RMSE for Naive Method 1: ', error) 

RMSE for Naive Method 1: 12.901140576492974 

Let us see the next naïve method, where predicted value at present time is equated to the 

mean of the time periods preceding it. We will calculate the RMSE for this method too. 

Showing 2nd naïve method 

In [139]: 

df['T_rm'] = df['T'].rolling(3).mean().shift(1) 

df_naive = df[['T','T_rm']].dropna() 

In [140]: 

true = df_naive['T'] 

prediction = df_naive['T_rm'] 

error = sqrt(metrics.mean_squared_error(true,prediction)) 

print ('RMSE for Naive Method 2: ', error) 

RMSE for Naive Method 2: 14.957633272839242 

Here, you can experiment with various number of previous time periods also called ‘lags’ 

you want to consider, which is kept as 3 here. In this data it can be seen that as you 

increase the number of lags and error increases. If lag is kept 1, it becomes same as the 

naïve method used earlier. 

Points to Note 

 You can write a very simple function for calculating root mean squared error. Here, 

we have used the mean squared error function from the package ‘sklearn’ and then 

taken its square root. 

 

  In pandas df[‘column_name’] can also be written as df.column_name, however for 

this dataset df.T will not work the same as df[‘T’] because df.T is the function for 

transposing a dataframe. So use only df[‘T’] or consider renaming this column 

before using the other syntax. 

 

 



Time Series 

 

       

15 

 

 

For a stationary time series, an auto regression models sees the value of a variable at time 

‘t’ as a linear function of values ‘p’ time steps preceding it. Mathematically it can be written 

as:  

 

Where,  ‘p’ is the auto-regressive trend parameter 

 𝜖𝑡 is white noise, and 

  𝑦𝑡−1, 𝑦𝑡−2 …𝑦𝑡−𝑝 denote the value of variable at previous time 

periods.  

The value of p can be calibrated using various methods. One way of finding the apt value 

of ‘p’ is plotting the auto-correlation plot. 

Note: We should separate the data into train and test at 8:2 ratio of total data available 

prior to doing any analysis on the data because test data is only to find out the accuracy 

of our model and assumption is, it is not available to us until after predictions have been 

made. In case of time series, sequence of data points is very essential so one should keep 

in mind not to lose the order during splitting of data. 

An auto-correlation plot or a correlogram shows the relation of a variable with itself at 

prior time steps. It makes use of Pearson’s correlation and shows the correlations within 

95% confidence interval. Let’s see how it looks like for ‘temperature’ variable of our data. 

Showing ACP 

In [141]: 

split = len(df) - int(0.2*len(df)) 

train, test = df['T'][0:split], df['T'][split:] 

In [142]: 

from statsmodels.graphics.tsaplots import plot_acf 

 

plot_acf(train, lags = 100) 

plt.show() 

8. Time Series – Auto Regression 
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All the lag values lying outside the shaded blue region are assumed to have a correlation. 
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For a stationary time series, a moving average model sees the value of a variable at time 

‘t’ as a linear function of residual errors from ‘q’ time steps preceding it. The residual error 

is calculated by comparing the value at the time ‘t’ to moving average of the values 

preceding. 

Mathematically it can be written as: 

 

Where   ‘q’ is the moving-average trend parameter 

  𝜖𝑡 is white noise, and  

𝜖𝑡−1, 𝜖𝑡−2 … 𝜖𝑡−𝑞are the error terms at previous time periods.   

Value of ‘q’ can be calibrated using various methods. One way of finding the apt value of 

‘q’ is plotting the partial auto-correlation plot. 

A partial auto-correlation plot shows the relation of a variable with itself at prior time steps 

with indirect correlations removed, unlike auto-correlation plot which shows direct as well 

as indirect correlations, let’s see how it looks like for ‘temperature’ variable of our data. 

Showing PACP 

In [143]: 

from statsmodels.graphics.tsaplots import plot_pacf 

 

plot_pacf(train, lags = 100) 

plt.show() 

 

9. Time Series – Moving Average 
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A partial auto-correlation is read in the same way as a correlogram. 
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We have already understood that for a stationary time series a variable at time ‘t’ is a 

linear function of prior observations or residual errors. Hence it is time for us to combine 

the two and have an Auto-regressive moving average (ARMA) model.  

However, at times the time series is not stationary, i.e the statistical properties of a series 

like mean, variance changes over time. And the statistical models we have studied so far 

assume the time series to be stationary, therefore, we can include a pre-processing step 

of differencing the time series to make it stationary. Now, it is important for us to find out 

whether the time series we are dealing with is stationary or not.  

Various methods to find the stationarity of a time series are looking for seasonality or 

trend in the plot of time series, checking the difference in mean and variance for various 

time periods, Augmented Dickey-Fuller (ADF) test, KPSS test, Hurst’s exponent etc. 

Let us see whether the ‘temperature’ variable of our dataset is a stationary time series or 

not using ADF test. 

In [74]: 

from statsmodels.tsa.stattools import adfuller 

 

result = adfuller(train) 

print('ADF Statistic: %f' % result[0]) 

print('p-value: %f' % result[1]) 

print('Critical Values:') 

for key, value In result[4].items() 

   print('\t%s: %.3f' % (key, value)) 

ADF Statistic: -10.406056 

p-value: 0.000000 

Critical Values: 

1%: -3.431 

5%: -2.862 

10%: -2.567 

Now that we have run the ADF test, let us interpret the result. First we will compare the 

ADF Statistic with the critical values, a lower critical value tells us the series is most likely 

non-stationary. Next, we see the p-value. A p-value greater than 0.05 also suggests that 

the time series is non-stationary. 

Alternatively, p-value less than or equal to 0.05, or ADF Statistic less than critical values 

suggest the time series is stationary. 

10. Time Series - ARIMA 
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Hence, the time series we are dealing with is already stationary. In case of stationary time 

series, we set the ‘d’ parameter as 0. 

We can also confirm the stationarity of time series using Hurst exponent.  

In [75]: 

import hurst 

 

H, c,data = hurst.compute_Hc(train) 

print("H = {:.4f}, c = {:.4f}".format(H,c)) 

H = 0.1660, c = 5.0740 

The value of H<0.5 shows anti-persistent behavior, and H>0.5 shows persistent behavior 

or a trending series. H=0.5 shows random walk/Brownian motion. The value of H<0.5, 

confirming that our series is stationary. 

For non-stationary time series, we set ‘d’ parameter as 1. Also, the value of the auto-

regressive trend parameter ‘p’ and the moving average trend parameter ‘q’, is calculated 

on the stationary time series i.e by plotting ACP and PACP after differencing the time 

series. 

ARIMA Model, which is characterized by 3 parameter, (p,d,q) are now clear to us, so let 

us model our time series and predict the future values of temperature. 

In [156]: 

from statsmodels.tsa.arima_model import ARIMA 

 

model = ARIMA(train.values, order=(5, 0, 2)) 

model_fit = model.fit(disp=False) 

In [157]: 

predictions = model_fit.predict(len(test)) 

test_ = pandas.DataFrame(test) 

test_['predictions'] = predictions[0:1871] 

In [158]: 

plt.plot(df['T']) 

plt.plot(test_.predictions) 

plt.show() 
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In [167]: 

error = sqrt(metrics.mean_squared_error(test.values,predictions[0:1871])) 

print ('Test RMSE for ARIMA: ', error) 

Test RMSE for ARIMA: 43.21252940234892 
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In the previous chapter, we have now seen how ARIMA model works, and its limitations 

that it cannot handle seasonal data or multivariate time series and hence, new models 

were introduced to include these features. 

A glimpse of these new models is given here: 

Vector Auto-Regression (VAR) 

It is a generalized version of auto regression model for multivariate stationary time series. 

It is characterized by ‘p’ parameter. 

Vector Moving Average (VMA) 

It is a generalized version of moving average model for multivariate stationary time series. 

It is characterized by ‘q’ parameter. 

Vector Auto Regression Moving Average (VARMA) 

It is the combination of VAR and VMA and a generalized version of ARMA model for 

multivariate stationary time series. It is characterized by ‘p’ and ‘q’ parameters. Much like, 

ARMA is capable of acting like an AR model by setting ‘q’ parameter as 0 and as a MA 

model by setting ‘p’ parameter as 0, VARMA is also capable of acting like an VAR model 

by setting ‘q’ parameter as 0 and as a VMA model by setting ‘p’ parameter as 0. 

In [209]: 

df_multi = df[['T', 'C6H6(GT)']] 

split = len(df) - int(0.2*len(df)) 

train_multi, test_multi = df_multi[0:split], df_multi[split:] 

In [211]: 

from statsmodels.tsa.statespace.varmax import VARMAX 

 

model = VARMAX(train_multi, order = (2,1)) 

model_fit = model.fit() 

c:\users\naveksha\appdata\local\programs\python\python37\lib\site-

packages\statsmodels\tsa\statespace\varmax.py:152: EstimationWarning: 

Estimation of VARMA(p,q) models is not generically robust, due especially to 

identification issues. 

   EstimationWarning) 

c:\users\naveksha\appdata\local\programs\python\python37\lib\site-

packages\statsmodels\tsa\base\tsa_model.py:171: ValueWarning: No frequency 

information was provided, so inferred frequency H will be used. 

   % freq, ValueWarning) 

11. Time Series – Variations of ARIMA 
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c:\users\naveksha\appdata\local\programs\python\python37\lib\site-

packages\statsmodels\base\model.py:508: ConvergenceWarning: Maximum Likelihood 

optimization failed to converge. Check mle_retvals 

   "Check mle_retvals", ConvergenceWarning) 

 In [213]: 

predictions_multi = model_fit.forecast( steps=len(test_multi)) 

c:\users\naveksha\appdata\local\programs\python\python37\lib\site-

packages\statsmodels\tsa\base\tsa_model.py:320: FutureWarning: Creating a 

DatetimeIndex by passing range endpoints is deprecated.  Use 

`pandas.date_range` instead. 

   freq = base_index.freq) 

c:\users\naveksha\appdata\local\programs\python\python37\lib\site-

packages\statsmodels\tsa\statespace\varmax.py:152: EstimationWarning: 

Estimation of VARMA(p,q) models is not generically robust, due especially to 

identification issues. 

   EstimationWarning) 

 In [231]: 

plt.plot(train_multi['T']) 

plt.plot(test_multi['T']) 

plt.plot(predictions_multi.iloc[:,0:1], '--') 

plt.show() 

 

plt.plot(train_multi['C6H6(GT)']) 

plt.plot(test_multi['C6H6(GT)']) 

plt.plot(predictions_multi.iloc[:,1:2], '--') 

plt.show() 
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The above code shows how VARMA model can be used to model multivariate time series, 

although this model may not be best suited on our data. 

VARMA with Exogenous Variables (VARMAX) 

It is an extension of VARMA model where extra variables called covariates are used to 

model the primary variable we are interested it. 

Seasonal Auto Regressive Integrated Moving Average (SARIMA) 

This is the extension of ARIMA model to deal with seasonal data. It divides the data into 

seasonal and non-seasonal components and models them in a similar fashion. It is 

characterized by 7 parameters, for non-seasonal part (p,d,q) parameters same as for 

ARIMA model and for seasonal part (P,D,Q,m) parameters where ‘m’ is the number of 

seasonal periods and P,D,Q are similar to parameters of ARIMA model. These parameters 

can be calibrated using grid search or genetic algorithm. 

SARIMA with Exogenous Variables (SARIMAX) 

This is the extension of SARIMA model to include exogenous variables which help us to 

model the variable we are interested in. 

It may be useful to do a co-relation analysis on variables before putting them as exogenous 

variables. 

In [251]: 

from scipy.stats.stats import pearsonr 

x=train_multi['T'].values 

y=train_multi['C6H6(GT)'].values 

 

corr , p = pearsonr(x,y) 

print ('Corelation Coefficient =', corr,'\nP-Value =',p) 

Corelation Coefficient = 0.9701173437269858  

P-Value = 0.0 
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Pearson’s Correlation shows a linear relation between 2 variables, to interpret the results, 

we first look at the p-value, if it is less that 0.05 then the value of coefficient is significant, 

else the value of coefficient is not significant. For significant p-value, a positive value of 

correlation coefficient indicates positive correlation, and a negative value indicates a 

negative correlation.  

Hence, for our data, ‘temperature’ and ‘C6H6’ seem to have a highly positive correlation. 

Therefore, we will be modelling temperature and will give ‘C6H6’ as exogenous variable to 

SARIMAX model. 

In [297]: 

from statsmodels.tsa.statespace.sarimax import SARIMAX 

 

model = SARIMAX(x, exog = y, order = (2, 0, 2), seasonal_order = (2, 0, 1, 1), 

enforce_stationarity=False, enforce_invertibility = False) 

model_fit = model.fit(disp = False) 

c:\users\naveksha\appdata\local\programs\python\python37\lib\site-

packages\statsmodels\base\model.py:508: ConvergenceWarning: Maximum Likelihood 

optimization failed to converge. Check mle_retvals 

   "Check mle_retvals", ConvergenceWarning) 

 In [298]: 

y_ = test_multi['C6H6(GT)'].values 

predicted = model_fit.predict(exog=y_) 

test_multi_ = pandas.DataFrame(test) 

test_multi_['predictions'] = predicted[0:1871] 

In [299]: 

plt.plot(train_multi['T']) 

plt.plot(test_multi_['T']) 

plt.plot(test_multi_.predictions, '--') 

Out[299]: 

[<matplotlib.lines.Line2D at 0x1eab0191c18>] 

The predictions here seem to take larger variations now as opposed to univariate ARIMA 

modelling. 

Needless to say, SARIMAX can be used as an ARX, MAX, ARMAX or ARIMAX model by 

setting only the corresponding parameters to non-zero values. 

Fractional Auto Regressive Integrated Moving Average (FARIMA) 

At times, it may happen that our series is not stationary, yet differencing with ‘d’ 

parameter taking the value 1 may over-difference it. So, we need to difference the time 

series using a fractional value. 
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In the world of data science there is no one superior model, the model that works on your 

data depends greatly on your dataset. Knowledge of various models allows us to choose 

one that work on our data and experimenting with that model to achieve the best results. 

And results should be seen as plot as well as error metrics, at times a small error may also 

be bad, hence, plotting and visualizing the results is essential. 

In the next chapter, we will be looking at another statistical model, exponential smoothing. 
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In this chapter, we will talk about the techniques involved in exponential smoothing of 

time series. 

Simple Exponential Smoothing 

Exponential Smoothing is a technique for smoothing univariate time-series by assigning 

exponentially decreasing weights to data over a time period.  

Mathematically, the value of variable at time ‘t+1’ given value at time t, y_(t+1|t) is 

defined as: 

where, 0≤ 𝛼 ≤1 is the smoothing parameter, and  

y1,...,yt are previous values of network traffic at times 1, 2, 3, … ,t.  

This is a simple method to model a time series with no clear trend or seasonality. But 

exponential smoothing can also be used for time series with trend and seasonality. 

Triple Exponential Smoothing  

Triple Exponential Smoothing (TES) or Holt's Winter method, applies exponential 

smoothing three times - level smoothing 𝑙𝑡 , trend smoothing 𝑏𝑡 , and seasonal smoothing 

𝑠𝑡 , with 𝛼, 𝛽∗
and 𝛾 as smoothing parameters with ‘m’ as the frequency of the 

seasonality, i.e. the number of seasons in a year.   

According to the nature of the seasonal component, TES has two categories: 

 Holt-Winter's Additive Method: When the seasonality is additive in nature. 

 Holt-Winter’s Multiplicative Method: When the seasonality is multiplicative in 

nature. 

For non-seasonal time series, we only have trend smoothing and level smoothing, which 

is called Holt’s Linear Trend Method. 

Let’s try applying triple exponential smoothing on our data. 

In [316]: 

from statsmodels.tsa.holtwinters import ExponentialSmoothing 

 

model = ExponentialSmoothing(train.values, trend= ) 

model_fit = model.fit() 

12. Time Series – Exponential Smoothing 
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In [322]: 

predictions_ = model_fit.predict(len(test)) 

In [325]: 

plt.plot(test.values) 

plt.plot(predictions_[1:1871]) 

Out[325]: 

[<matplotlib.lines.Line2D at 0x1eab00f1cf8>] 

 

Here, we have trained the model once with training set and then we keep on making 

predictions. A more realistic approach is to re-train the model after one or more time 

step(s). As we get the prediction for time ‘t+1’ from training data ‘til time ‘t’, the next 

prediction for time ‘t+2’ can be made using the training data ‘til time ‘t+1’ as the actual 

value at ‘t+1’ will be known then. This methodology of making predictions for one or more 

future steps and then re-training the model is called rolling forecast or walk forward 

validation. 
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In time series modelling, the predictions over time become less and less accurate and 

hence it is a more realistic approach to re-train the model with actual data as it gets 

available for further predictions. Since training of statistical models are not time 

consuming, walk-forward validation is the most preferred solution to get most accurate 

results. 

Let us apply one step walk forward validation on our data and compare it with the results 

we got earlier. 

In [333]: 

prediction = [] 

data = train.values 

for t In test.values: 

   model = (ExponentialSmoothing(data).fit()) 

   y = model.predict() 

   prediction.append(y[0]) 

   data = numpy.append(data, t) 

In [335]: 

test_ = pandas.DataFrame(test) 

test_['predictionswf'] = prediction 

In [341]: 

plt.plot(test_['T']) 

plt.plot(test_.predictionswf, '--') 

plt.show() 

 

13. Time Series – Walk Forward Validation 
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In [340]: 

error = sqrt(metrics.mean_squared_error(test.values,prediction)) 

print ('Test RMSE for Triple Exponential Smoothing with Walk-Forward 

Validation: ', error) 

Test RMSE for Triple Exponential Smoothing with Walk-Forward Validation:  

11.787532205759442 

We can see that our model performs significantly better now. In fact, the trend is followed 

so closely that on the plot predictions are overlapping with the actual values. You can try 

applying walk-forward validation on ARIMA models too. 
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In 2017, Facebook open sourced the prophet model which was capable of modelling the 

time series with strong multiple seasonalities at day level, week level, year level etc. and 

trend. It has intuitive parameters that a not-so-expert data scientist can tune for better 

forecasts. At its core, it is an additive regressive model which can detect change points to 

model the time series. 

Prophet decomposes the time series into components of trend 𝑔𝑡, seasonality 𝑠𝑡 and 

holidays ℎ𝑡. 

 

Where,    𝜖𝑡 is the error term. 

Similar packages for time series forecasting such as causal impact and anomaly detection 

were introduced in R by google and twitter respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

14. Time Series – Prophet Model 
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Now, we are familiar with statistical modelling on time series, but machine learning is all 

the rage right now, so it is essential to be familiar with some machine learning models as 

well. We shall start with the most popular model in time series domain – Long Short-term 

Memory model. 

LSTM is a class of recurrent neural network. So before we can jump to LSTM, it is essential 

to understand neural networks and recurrent neural networks. 

Neural Networks 

An artificial neural network is a layered structure of connected neurons, inspired by 

biological neural networks. It is not one algorithm but combinations of various algorithms 

which allows us to do complex operations on data.  

Recurrent Neural Networks 

It is a class of neural networks tailored to deal with temporal data. The neurons of RNN 

have a cell state/memory, and input is processed according to this internal state, which is 

achieved with the help of loops with in the neural network. There are recurring module(s) 

of ‘tanh’ layers in RNNs that allow them to retain information. However, not for a long 

time, which is why we need LSTM models. 

LSTM 

It is special kind of recurrent neural network that is capable of learning long term 

dependencies in data. This is achieved because the recurring module of the model has a 

combination of four layers interacting with each other.  

 

 

 

15. Time Series – LSTM Model 
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The picture above depicts four neural network layers in yellow boxes, point wise operators 

in green circles, input in yellow circles and cell state in blue circles. An LSTM module has 

a cell state and three gates which provides them with the power to selectively learn, 

unlearn or retain information from each of the units. The cell state in LSTM helps the 

information to flow through the units without being altered by allowing only a few linear 

interactions. Each unit has an input, output and a forget gate which can add or remove 

the information to the cell state. The forget gate decides which information from the 

previous cell state should be forgotten for which it uses a sigmoid function. The input gate 

controls the information flow to the current cell state using a point-wise multiplication 

operation of ‘sigmoid’ and ‘tanh’ respectively. Finally, the output gate decides which 

information should be passed on to the next hidden state. 

Now that we have understood the internal working of LSTM model, let us implement it. To 

understand the implementation of LSTM, we will start with a simple example – a straight 

line. Let us see, if LSTM can learn the relationship of a straight line and predict it. 

First let us create the dataset depicting a straight line. 

In [402]: 

x = numpy.arange (1,500,1) 

y = 0.4 * x + 30 

plt.plot(x,y) 

Out[402]: 

[<matplotlib.lines.Line2D at 0x1eab9d3ee10>] 

 

In [403]: 

trainx, testx = x[0:int(0.8*(len(x)))], x[int(0.8*(len(x))):] 

trainy, testy = y[0:int(0.8*(len(y)))], y[int(0.8*(len(y))):] 

train = numpy.array(list(zip(trainx,trainy))) 

test = numpy.array(list(zip(trainx,trainy))) 

Now that the data has been created and split into train and test. Let’s convert the time 

series data into the form of supervised learning data according to the value of look-back 
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period, which is essentially the number of lags which are seen to predict the value at time 

‘t’. 

So a time series like this: 

time variable_x 

t1 x1 

t2 x2 

 :  : 

 :  : 

T xT 

 

When look-back period is 1, is converted to: 

x1 x2 

x2 x3 

 :  : 

 :  : 

xT-1 xT 

In [404]: 

def create_dataset(n_X, look_back): 

    dataX, dataY = [], [] 

    for i in range(len(n_X)-look_back): 

        a = n_X[i:(i+look_back), ] 

        dataX.append(a) 

        dataY.append(n_X[i + look_back, ]) 

    return numpy.array(dataX), numpy.array(dataY) 

In [405]: 

look_back = 1 

trainx,trainy = create_dataset(train, look_back) 

testx,testy = create_dataset(test, look_back) 

 

trainx = numpy.reshape(trainx, (trainx.shape[0], 1, 2)) 

testx = numpy.reshape(testx, (testx.shape[0], 1, 2)) 

Now we will train our model. 
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Small batches of training data are shown to network, one run of when entire training data 

is shown to the model in batches and error is calculated is called an epoch. The epochs 

are to be run ‘til the time the error is reducing. 

In [ ]: 

from keras.models import Sequential 

from keras.layers import LSTM, Dense 

 

model = Sequential() 

model.add(LSTM(256, return_sequences=True, input_shape=(trainx.shape[1], 2))) 

model.add(LSTM(128,input_shape=(trainx.shape[1], 2))) 

model.add(Dense(2)) 

model.compile(loss='mean_squared_error', optimizer = 'adam') 

model.fit(trainx, trainy, epochs=2000, batch_size=10, verbose=2, shuffle=False) 

model.save_weights('LSTMBasic1.h5') 

In [407]: 

model.load_weights('LSTMBasic1.h5') 

predict = model.predict(testx) 

Now let’s see what our predictions look like. 

In [408]: 

plt.plot(testx.reshape(398,2)[:,0:1], testx.reshape(398,2)[:,1:2]) 

plt.plot(predict[:,0:1], predict[:,1:2]) 

Out[408]: 

[<matplotlib.lines.Line2D at 0x1eac792f048>] 
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Now, we should try and model a sine or cosine wave in a similar fashion. You can run the 

code given below and play with the model parameters to see how the results change. 

In [409]: 

x = numpy.arange (1,500,1) 

y = numpy.sin(x) 

plt.plot(x,y) 

Out[409]: 

[<matplotlib.lines.Line2D at 0x1eac7a0b3c8>] 

 
In [410]: 

trainx, testx = x[0:int(0.8*(len(x)))], x[int(0.8*(len(x))):] 

trainy, testy = y[0:int(0.8*(len(y)))], y[int(0.8*(len(y))):] 

train = numpy.array(list(zip(trainx,trainy))) 

test = numpy.array(list(zip(trainx,trainy))) 

In [411]: 

look_back = 1 

trainx,trainy = create_dataset(train, look_back) 

testx,testy = create_dataset(test, look_back) 

trainx = numpy.reshape(trainx, (trainx.shape[0], 1, 2)) 

testx = numpy.reshape(testx, (testx.shape[0], 1, 2)) 

In [ ]: 

model = Sequential() 

model.add(LSTM(512, return_sequences = True, input_shape = (trainx.shape[1], 

2))) 

model.add(LSTM(256,input_shape = (trainx.shape[1], 2))) 
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model.add(Dense(2)) 

model.compile(loss = 'mean_squared_error', optimizer = 'adam') 

model.fit(trainx, trainy, epochs = 2000, batch_size = 10, verbose = 2, shuffle 

= False) 

model.save_weights('LSTMBasic2.h5') 

In [413]: 

model.load_weights('LSTMBasic2.h5') 

predict = model.predict(testx) 

In [415]: 

plt.plot(trainx.reshape(398,2)[:,0:1], trainx.reshape(398,2)[:,1:2]) 

plt.plot(predict[:,0:1], predict[:,1:2]) 

Out [415]: 

[<matplotlib.lines.Line2D at 0x1eac7a1f550>] 

 

Now you are ready to move on to any dataset.  
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It is important for us to quantify the performance of a model to use it as a feedback and 

comparison. In this tutorial we have used one of the most popular error metric root mean 

squared error. There are various other error metrics available. This chapter discusses them 

in brief. 

Mean Square Error 

It is the average of square of difference between the predicted values and true values. 

Sklearn provides it as a function. It has the same units as the true and predicted values 

squared and is always positive. 

 

Where   𝑦𝑡
′ is the predicted value, 

𝑦𝑡 is the actual value, and  

n is the total number of values in test set.  

It is clear from the equation that MSE is more penalizing for larger errors, or the outliers. 

Root Mean Square Error 

It is the square root of the mean square error. It is also always positive and is in the range 

of the data. 

 

Where, 𝑦𝑡
′ is predicted value 

 𝑦𝑡 is actual value, and  

n is total number of values in test set. 

It is in the power of unity and hence is more interpretable as compared to MSE. RMSE is 

also more penalizing for larger errors. We have used RMSE metric in our tutorial. 

Mean Absolute Error 

16. Time Series – Error Metrics 
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It is the average of absolute difference between predicted values and true values. It has 

the same units as predicted and true value and is always positive. 

 

Where, 𝑦𝑡
′ is predicted value, 

𝑦𝑡 is actual value, and  

n is total number of values in test set. 

Mean Percentage Error 

 It is the percentage of average of absolute difference between predicted values and true 

values, divided by the true value. 

 

Where,  𝑦𝑡
′
 is predicted value,  

𝑦𝑡 is actual value and n is total number of values in test set. 

However, the disadvantage of using this error is that the positive error and negative errors 

can offset each other. Hence mean absolute percentage error is used. 

Mean Absolute Percentage Error 

It is the percentage of average of absolute difference between predicted values and true 

values, divided by the true value. 

 

Where   𝑦𝑡
′ is predicted value 

𝑦𝑡 is actual value, and  

n is total number of values in test set. 
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We discussed time series analysis in this tutorial, which has given us the understanding 

that time series models first recognize the trend and seasonality from the existing 

observations and then forecast a value based on this trend and seasonality. Such analysis 

is useful in various fields such as: 

 Financial Analysis: It includes sales forecasting, inventory analysis, stock market 

analysis, price estimation.   

 

 Weather Analysis: It includes temperature estimation, climate change, seasonal 

shift recognition, weather forecasting.  

 

 Network Data Analysis: It includes network usage prediction, anomaly or 

intrusion detection, predictive maintenance. 

 

 Healthcare Analysis: It includes census prediction, insurance benefits prediction, 

patient monitoring. 

 

 

 

  

17. Time Series – Applications 
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Machine learning deals with various kinds of problems. In fact, almost all fields have a 

scope to be automatized or improved with the help of machine learning. A few such 

problems on which a great deal of work is being done are given below. 

Time Series Data 

This is the data which changes according to time, and hence time plays a crucial role in it, 

which we largely discussed in this tutorial. 

Non-Time Series Data 

It is the data independent of time, and a major percentage of ML problems are on non-

time series data. For simplicity, we shall categorize it further as: 

 Numerical Data: Computers, unlike humans, only understand numbers, so all 

kinds of data ultimately is converted to numerical data for machine learning, for 

example, image data is converted to (r,b,g) values, characters are converted to 

ASCII codes or words are indexed to numbers, speech data is converted to mfcc 

files containing numerical data. 

 

 Image Data: Computer vision has revolutionized the world of computers, it has 

various application in the field of medicine, satellite imaging etc. 

 

 Text Data: Natural Language Processing (NLP) is used for text classification, 

paraphrase detection and language summarization. This is what makes Google and 

Facebook smart. 

 

 Speech Data: Speech Processing involves speech recognition and sentiment 

understanding. It plays a crucial role in imparting computers the human-like 

qualities. 

 

18. Time Series – Further Scope 


