

wxPython

 i

About the Tutorial

wxPython is a blend of wxWidgets and Python programming library. This introductory

tutorial provides the basics of GUI programming and helps you create desktop GUI

applications.

Audience

This tutorial is designed for software programmers who are keen on learning how to

develop GUI applications for the desktop.

Prerequisites

You should have a basic understanding of computer programming terminologies. A basic

understanding of Python and any of the programming languages is a plus.

Disclaimer & Copyright

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

wxPython

 ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Disclaimer & Copyright ... i

Table of Contents .. ii

1. WXPYTHON – INTRODUCTION ... 1

2. WXPYTHON –ENVIRONMENT .. 2

Windows ... 2

Linux ... 2

MacOS ... 2

3. WXPYTHON – HELLO WORLD .. 3

4. WXPYTHON – FRAME CLASS .. 5

Window Style Constants ... 5

wx.Frame Class Member Functions ... 6

wx.Frame event binders .. 6

5. WXPYTHON – PANEL CLASS ... 7

6. WXPYTHON – GUI BUILDER TOOLS .. 8

7. WXPYTHON – MAJOR CLASSES .. 12

8. WXPYTHON – EVENT HANDLING ... 15

9. WXPYTHON – LAYOUT MANAGEMENT .. 20

10. WXPYTHON – BOXSIZER .. 21

wxPython

 iii

11. WXPYTHON – GRIDSIZER ... 26

12. WXPYTHON – FLEXIGRIDSIZER ... 29

13. WXPYTHON – GRIDBAGSIZER .. 32

14. WXPYTHON – STATICBOXSIZER .. 35

15. WXPYTHON – BUTTONS .. 38

16. WXPYTHON – STATICTEXT CLASS ... 43

17. WXPYTHON – TEXTCTRL CLASS .. 47

18. WXPYTHON –RADIOBUTTON & RADIOBOX .. 51

19. WXPYTHON – CHECKBOX CLASS .. 55

20. WXPYTHON –COMBOBOX & CHOICE CLASS .. 57

21. WXPYTHON – GAUGE CLASS .. 61

22. WXPYTHON – SLIDER CLASS .. 64

23. WXPYTHON – MENU ITEM, MENU & MENUBAR .. 67

24. WXPYTHON – TOOLBAR CLASS .. 72

25. WXPYTHON – DIALOG CLASS ... 76

MessageDialog .. 77

wx.TextEntryDialog ... 79

wx.FileDialog Class .. 82

wx.FontDialog Class .. 86

26. WXPYTHON – NOTEBOOK CLASS ... 89

wxPython

 iv

27. WXPYTHON – DOCKABLE WINDOWS ... 93

28. WXPYTHON – MULTIPLE DOCUMENT INTERFACE ... 96

29. WXPYTHON – SPLITTERWINDOW CLASS .. 98

30. WXPYTHON – DRAWING API ... 101

wx.Colour Class ... 101

wx.Pen Class ... 102

wx.Brush Class .. 102

31. WXPYTHON – HTMLWINDOW CLASS ... 105

32. WXPYTHON – LISTBOX & LISTCTRL CLASS .. 107

33. WXPYTHON – DRAG AND DROP ... 113

wxPython

 5

wxPython is a Python wrapper for wxWidgets (which is written in C++), a popular cross-

platform GUI toolkit. Developed by Robin Dunn along with Harri Pasanen, wxPython is

implemented as a Python extension module.

Just like wxWidgets, wxPython is also a free software. It can be downloaded from the official

website http://wxpython.org. Binaries and source code for many operating system platforms

are available for download on this site.

Principal modules in wxPython API include a core module. It consists of wxObject class,

which is the base for all classes in the API. Control module contains all the widgets used in

GUI application development. For example, wx.Button, wx.StaticText (analogous to a label),

wx.TextCtrl (editable text control), etc.

wxPython API has GDI (Graphics Device Interface) module. It is a set of classes used for

drawing on widgets. Classes like font, color, brush, etc. are a part of it. All the container

window classes are defined in Windows module.

Official website of wxPython also hosts Project Phoenix – a new implementation of wxPython

for Python 3.*. It focuses on improving speed, maintainability, and extensibility. The project

began in 2012 and is still in beta stage.

1. wxPython – Introduction

http://wxpython.org/

wxPython

 6

Windows

Prebuilt binaries for Windows OS (both 32 bit and 64 bit) are available on

http://www.wxpython.org/download.php page. Latest versions of installers available are:

wxPython3.0-win32-3.0.2.0-py27.exe for 32-bit Python 2.7

wxPython3.0-win64-3.0.2.0-py27.exe for 64-bit Python 2.7

wxPython demo, samples and wxWidgets documentation is also available for download on the

same page.

wxPython3.0-win32-docs-demos.exe

Linux

wxPython binaries for many Linux distros can be found in their respective repositories.

Corresponding package managers will have to be used to download and install. For instance

on Debian Linux, following command should be able to install wxPython.

sudo apt-get install python-wxgtk3.0

MacOS

Prebuilt binaries for MacOS in the form of disk images are available on the download page of

the official website.

2. wxPython –Environment

http://www.wxpython.org/download.php
http://downloads.sourceforge.net/wxpython/wxPython3.0-win32-3.0.2.0-py27.exe
http://downloads.sourceforge.net/wxpython/wxPython3.0-win64-3.0.2.0-py27.exe
http://downloads.sourceforge.net/wxpython/wxPython3.0-win32-docs-demos-3.0.2.0.exe

wxPython

 7

A simple GUI application displaying Hello World message is built using the following steps:

 Import wx module.

 Define an object of Application class.

 Create a top level window as object of wx.Frame class. Caption and size parameters
are given in constructor.

 Although other controls can be added in Frame object, their layout cannot be managed.
Hence, put a Panel object into the Frame.

 Add a StaticText object to display ‘Hello World’ at a desired position inside the window.

 Activate the frame window by show() method.

 Enter the main event loop of Application object.

import wx

app = wx.App()

window = wx.Frame(None,title="wxPython Frame",size=(300,200))

panel=wx.Panel(window)

label=wx.StaticText(panel,label="Hello World",pos=(100,50))

window.Show(True)

app.MainLoop()

The above code produces the following output:

3. wxPython – Hello World

wxPython

 8

wxFrame object is the most commonly employed top level window. It is derived from

wxWindow class. A frame is a window whose size and position can be changed by the user.

It has a title bar and control buttons. If required, other components like menu bar, toolbar

and status bar can be enabled. A wxFrame window can contain any frame that is not a dialog

or another frame.

wxPython

 9

wx.Frame Class has a default constructor with no arguments. It also has an overloaded

constructor with the following parameters:

Wx.Frame (parent, id, title, pos, size, style, name)

Parameter Description

Parent

Window parent. If ‘None’ is selected the object is at the top level

window. If ‘None’ is not selected, the frame appears on top of the

parent window

id
Window identifier. Usually -1 to let the identifier be generated

automatically

Title Caption to appear in the title bar

Pos
The starting position of the frame. If not given, wxDefaultPosition is

as decided by OS

Size Dimensions of the window. wxDefaultSize is decided by OS

style Appearance of the window controlled by style constants

name The internal name of object

Window Style Constants

wx.DEFAULT_FRAME_STYLE

wx.CAPTION

wx.MINIMIZE_BOX

wx.MAXIMIZE_BOX

wx.CLOSE_BOX

wx.SYSTEM_MENU

wx.RESIZE_BORDER

4. wxPython – Frame Class

wxPython

 10

wx.STAY_ON_TOP

wx.FRAME_FLOAT_ON_PARENT

wx.DEFAULT_FRAME_STYLE is defined as:

wx.MINIMIZE_BOX | wx.MAXIMIZE_BOX | wx.RESIZE_BORDER | wx.SYSTEM_MENU |

wx.CAPTION | wx.CLOSE_BOX | wx.CLIP_CHILDREN

Example

window=wx.Frame(None, -1, “Hello”, pos=(10,10), size=(300,200), style=
wxDEFAULT_FRAME_STYLE, name=”frame”)

wx.Frame Class Member Functions

CreateStatusBar() Creates the status bar at bottom of the window

CreateToolBar() Creates the toolbar at the top or left of the window

GetMenuBar() Gets reference to menu bar

GetStatusBar() Gets reference to statusbar

SetMenuBar() Displays the menu bar object in the frame

setStatusBar() Associates the status bar object to the frame

SetToolBar() Associates a toolbar object to the frame

SetStatusText() Displays text on the status bar

Create() Creates a frame with provided parameters

Centre() Places the frame at the center of display

SetPosition() Places the frame at given screen coordinates

SetSize() Resizes the frame to given dimensions

SetTitle() Inserts the given text in the title bar

wxPython

 11

wx.Frame event binders

EVT_CLOSE
When the frame is being closed by the user clicking

the close button or programmatically

EVT_MENU_OPEN When a menu is about to be opened

EVT_MENU_CLOSE When a menu has just been closed

EVT_MENU_HIGHLIGHT
When the menu item with the specified id has been

highlighted

wxPython

 12

Widgets such as button, text box, etc. are placed on a panel window. wx.Panel class is

usually put inside a wxFrame object. This class is also inherited from wxWindow class.

Although controls can be manually placed on panel by specifying the position in screen

coordinates, it is recommended to use a suitable layout scheme, called sizer in wxPython, to

have better control over the placement and address the resizing issue.

In wxPanel constructor, the parent parameter is the wx.Frame object in which the panel is

to be placed. Default value of id parameter is wx.ID_ANY, whereas the default style parameter

is wxTAB_TRAVERSAL.

wxPython API has the following sizers, using which controls are added into a panel object:

wx.BoxSizer Widgets are arranged in a vertical or horizontal box

wx.StaticBoxSizer Adds a staticbox around the sizer

wx.GridSizer One control each added in equal sized cells of a grid

wx.FlexGridSizer Control added in cell grid can occupy more than one cell

wx.GridBagSizer
Controls explicitly positioned in a grid and spanning over

more than one row and/or column

Sizer object is applied as the layout manager of the panel using SetSizer() method of wxPanel

class.

wx.Panel.SetSizer(wx.???Sizer())

Panel object in turn is added to the top level frame.

5. wxPython – Panel Class

wxPython

 13

Creating a good looking GUI by manual coding can be tedious. A visual GUI designer tool is

always handy. Many GUI development IDEs targeted at wxPython are available. Following are

some of them:

 wxFormBuilder

 wxDesigner

 wxGlade

 BoaConstructor

 gui2py

wxFormBuilder is an open source, cross-platform WYSIWYG GUI builder that can translate

the wxWidget GUI design into C++, Python, PHP or XML format. A brief introduction to usage

of wxFormBuilder is given here.

First of all the latest version of wxFormBuilder needs to be downloaded and installed from

http://sourceforge.net/projects/wxformbuilder/. On opening the application, a new project

with blank grey area at the center appears.

Give a suitable name to the project and choose Python as code generation language. This is

done in the Object properties window as shown in the following image:

6. wxPython – GUI Builder Tools

http://sourceforge.net/projects/wxformbuilder/

wxPython

 14

Then from ‘Forms’ tab of components palette, choose Frame.

Add a vertical wxBoxSizer from ‘Layouts’ tab.

wxPython

 15

Add necessary controls in the Box with suitable captions. Here, a StaticText (label), two

TextCtrl objects (text boxes) and a wxButton object are added. The frame looks like the

following image:

Enable Expand and Stretch on these three controls. In the object properties for wxButton

object, assign a function findsquare() to OnButtonClick event.

wxPython

 16

Save the project and press F8 to generate Python code for developed GUI. Let the generated

file be named as Demo.py

In the executable Python script, import demo.py and define FindSquare() function. Declare

Application object and start a main event loop. Following is the executable code:

import wx

#import the newly created GUI file

import demo

class CalcFrame(demo.MyFrame1):

 def __init__(self,parent):

 demo.MyFrame1.__init__(self,parent)

 def FindSquare(self,event):

 num = int(self.m_textCtrl1.GetValue())

 self.m_textCtrl2.SetValue (str(num*num))

app = wx.App(False)

frame = CalcFrame(None)

frame.Show(True)

wxPython

 17

#start the applications

app.MainLoop()

The above code produces the following output:

wxPython

 18

Original wxWidgets (written in C++) is a huge class library. GUI classes from this library are

ported to Python with wxPython module, which tries to mirror the original wxWidgets library

as close as possible. So, wx.Frame class in wxPython acts much in the same way as wxFrame

class in its C++ version.

wxObject is the base for most of the classes. An object of wxApp (wx.App in wxPython)

represents the application itself. After generating the GUI, application enters in an event loop

by MainLoop() method. Following diagrams depict the class hierarchy of most commonly used

GUI classes included in wxPython.

7. wxPython – Major Classes

wxPython

 19

wxPython

 20

wxPython

 21

wxPython

 22

Unlike a console mode application, which is executed in a sequential manner, a GUI based

application is event driven. Functions or methods are executed in response to user’s actions

like clicking a button, selecting an item from collection or mouse click, etc., called events.

Data pertaining to an event which takes place during the application’s runtime is stored as

object of a subclass derived from wx.Event. A display control (such as Button) is the source

of event of a particular type and produces an object of Event class associated to it. For

instance, click of a button emits a wx.CommandEvent. This event data is dispatched to event

handler method in the program. wxPython has many predefined event binders. An Event

binder encapsulates relationship between a specific widget (control), its associated event

type and the event handler method.

For example, to call OnClick() method of the program on a button’s click event, the following

statement is required:

self.b1.Bind(EVT_BUTTON, OnClick)

Bind() method is inherited by all display objects from wx.EvtHandler class. EVT_.BUTTON

here is the binder, which associates button click event to OnClick() method.

Example

In the following example, the MoveEvent, caused by dragging the top level window – a

wx.Frame object in this case – is connected to OnMove() method using wx.EVT_MOVE

binder. The code displays a window. If it is moved using mouse, its instantaneous coordinates

are displayed on the console.

import wx

class Example(wx.Frame):

 def __init__(self, *args, **kw):

 super(Example, self).__init__(*args, **kw)

 self.InitUI()

 def InitUI(self):

 self.Bind(wx.EVT_MOVE, self.OnMove)

 self.SetSize((250, 180))

8. wxPython – Event Handling

wxPython

 23

 self.SetTitle('Move event')

 self.Centre()

 self.Show(True)

 def OnMove(self, e):

 x, y = e.GetPosition()

 print "current window position x=",x," y=",y

ex = wx.App()

Example(None)

ex.MainLoop()

The above code produces the following output:

current window position x= 562 y= 309

current window position x= 562 y= 309

current window position x= 326 y= 304

current window position x= 384 y= 240

current window position x= 173 y= 408

current window position x= 226 y= 30

current window position x= 481 y= 80

wxPython

 24

Some of the subclasses inherited from wx.Event are listed in the following table:

wxKeyEvent Occurs when a key is presses or released

wxPaintEvent
Is generated whenever contents of the window needs to be

redrawn

wxMouseEvent
Contains data about any event due to mouse activity like

mouse button pressed or dragged

wxScrollEvent
Associated with scrollable controls like wxScrollbar and

wxSlider

wxCommandEvent
Contains event data originating from many widgets such as

button, dialogs, clipboard, etc.

wxMenuEvent
Different menu-related events excluding menu command

button click

wxColourPickerEvent wxColourPickerCtrl generated events

wxDirFileickerEvent Events generated by FileDialog and DirDialog

Events in wxPython are of two types. Basic events and Command events. A basic event stays

local to the window in which it originates. Most of the wxWidgets generate command events.

A command event can be propagated to window or windows, which are above the source

window in class hierarchy.

Example

Following is a simple example of event propagation. The complete code is:

import wx

class MyPanel(wx.Panel):

 def __init__(self, parent):

 super(MyPanel, self).__init__(parent)

 b=wx.Button(self, label='Btn', pos=(100,100))

 b.Bind(wx.EVT_BUTTON, self.btnclk)

 self.Bind(wx.EVT_BUTTON, self.OnButtonClicked)

wxPython

 25

 def OnButtonClicked(self, e):

 print 'Panel received click event. propagated to Frame class'

 e.Skip()

 def btnclk(self,e):

 print "Button received click event. propagated to Panel class"

 e.Skip()

class Example(wx.Frame):

 def __init__(self,parent):

 super(Example, self).__init__(parent)

 self.InitUI()

 def InitUI(self):

 mpnl = MyPanel(self)

 self.Bind(wx.EVT_BUTTON, self.OnButtonClicked)

 self.SetTitle('Event propagation demo')

 self.Centre()

 self.Show(True)

 def OnButtonClicked(self, e):

 print 'click event received by frame class'

 e.Skip()

ex = wx.App()

wxPython

 26

Example(None)

ex.MainLoop()

In the above code, there are two classes. MyPanel, a wx.Panel subclass and Example, a

wx.Frame subclass which is the top level window for the program. A button is placed in the

panel.

This Button object is bound to an event handler btnclk() which propagates it to parent class

(MyPanel in this case). Button click generates a CommandEvent which can be propagated

to its parent by Skip() method.

MyPanel class object also binds the received event to another handler OnButtonClicked(). This

function in turn transmits to its parent, the Example class. The above code produces the

following output:

Button received click event. Propagated to Panel class.

Panel received click event. Propagated to Frame class.

Click event received by frame class.

wxPython

 27

End of ebook preview

If you liked what you saw…
Buy it from our store @ https://store.tutorialspoint.com

