
- Blockchain - Home
- Blockchain - Introduction
- History of Blockchain
- Blockchain - Technology
- Blockchain and Cryptography
- Blockchain Beyond Crypto
- Blockchain - Advanced Concepts
- Blockchain - Decentralization
- Blockchain - D-Apps
- Blockchain - DeFi
- Blockchain - Future Scope
- Smart Contracts in Blockchain
- Blockchain - Ricardian Contracts
- Blockchain - Oracles
- Blockchain - DAO
- Bitcoin
- Bitcoin - Invisible Gold
- How Bitcoin Works?
- Bitcoin - Network
- Bitcoin - Wallets
- Bitcoin - Innovations
- Ethereum
- Ethereum Alternate Cryptocurrency
- Ethereum Ecosystem
- Ethereum Virtual Machine
- Advanced Ethereum
- Ethereum Wallets
- Ethereum Miner Nodes
- Miscellaneous
- Blockchain - Double Spending
- Public Key Cryptography
- Blockchain - Hashing
- Bitcoin - Mining
- Blockchain - Chaining Blocks
- Blockchain - Proof of Work
- Blockchain - Network & Mining
- Blockchain - Incentives to Miners
- Blockchain - Merkle Tree
- Blockchain - Payment Verification
- Blockchain - Resolving Conflicts
- Blockchain - Privacy
- Bitcoin - Mitigating Attacks
- Blockchain - Conclusion
Blockchain - Hashing
One of the most important function in PKI is the hashing function. A hash function maps the data of any arbitrary size to data of fixed size. Bitcoin uses SHA-256 hash function that produces a hash (output) of size 256 bits (32 bytes). This is illustrated in image −

Bob, while placing an order with Lisa, creates a message similar to the one shown above. This message is hashed through a hash function that produces a 32 byte hash. The beauty of this hash is for all practical purposes the hash (the 256-bit number) is considered unique for the contents of the message. If the message is modified, the hash value will change. Not only that given a hash value, it is impossible to reconstruct the original message.
After having seen the importance of hashing, let us move on another concept in Bitcoin that is mining.