
- Electrical Machines - Home
- Basic Concepts
- Electromechanical Energy Conversion
- Energy Stored in Magnetic Field
- Singly-Excited and Doubly Excited Systems
- Rotating Electrical Machines
- Electrical Machines Types
- Faraday’s Laws of Electromagnetic Induction
- Concept of Induced EMF
- Fleming's Left Hand and Right Hand Rules
- Transformers
- Electrical Transformer
- Construction of Transformer
- EMF Equation of Transformer
- Turns Ratio and Voltage Transformation Ratio
- Ideal Transformer
- Practical Transformer
- Ideal and Practical Transformers
- Transformer on DC
- Losses in a Transformer
- Efficiency of Transformer
- 3-Phase Transformer
- Types of Transformers
- More on Transformers
- Transformer Working Principle
- Single-Phase Transformer Working Principle
- 3-Phase Transformer Principle
- 3-Phase Induction Motor Torque-Slip
- 3-Phase Induction Motor Torque-Speed
- 3-Phase Transformer Harmonics
- Double-Star Connection (3-6 Phase)
- Double-delta Connection (3-6 Phase)
- Transformer Ratios
- Voltage Regulation
- Delta-Star Connection (3-Phase)
- Star-Delta Connection (3-Phase)
- Autotransformer Conversion
- Back-to-back Test (Sumpner's Test)
- Transformer Voltage Drop
- Autotransformer Output
- Open and Short Circuit Test
- 3-Phase Autotransformer
- Star-Star Connection
- 6-Phase Diametrical Connections
- Circuit Test (Three-Winding)
- Potential Transformer
- Transformers Parallel Operation
- Open Delta (V-V) Connection
- Autotransformer
- Current Transformer
- No-Load Current Wave
- Transformer Inrush Current
- Transformer Vector Groups
- 3 to 12-Phase Transformers
- Scott-T Transformer Connection
- Transformer kVA Rating
- Three-Winding Transformer
- Delta-Delta Connection Transformer
- Transformer DC Supply Issue
- Equivalent Circuit Transformer
- Simplified Equivalent Circuit of Transformer
- Transformer No-Load Condition
- Transformer Load Condition
- OTI WTI Transformer
- CVT Transformer
- Isolation vs Regular Transformer
- Dry vs Oil-Filled
- DC Machines
- Construction of DC Machines
- Types of DC Machines
- Working Principle of DC Generator
- EMF Equation of DC Generator
- Derivation of EMF Equation DC Generator
- Types of DC Generators
- Working Principle of DC Motor
- Back EMF in DC Motor
- Types of DC Motors
- Losses in DC Machines
- Applications of DC Machines
- More on DC Machines
- DC Generator
- DC Generator Armature Reaction
- DC Generator Commutator Action
- Stepper vs DC Motors
- DC Shunt Generators Critical Resistance
- DC Machines Commutation
- DC Motor Characteristics
- Synchronous Generator Working Principle
- DC Generator Characteristics
- DC Generator Demagnetizing & Cross-Magnetizing
- DC Motor Voltage & Power Equations
- DC Generator Efficiency
- Electric Breaking of DC Motors
- DC Motor Efficiency
- Four Quadrant Operation of DC Motors
- Open Circuit Characteristics of DC Generators
- Voltage Build-Up in Self-Excited DC Generators
- Types of Armature Winding in DC Machines
- Torque in DC Motors
- Swinburne’s Test of DC Machine
- Speed Control of DC Shunt Motor
- Speed Control of DC Series Motor
- DC Motor of Speed Regulation
- Hopkinson's Test
- Permanent Magnet DC Motor
- Permanent Magnet Stepper Motor
- DC Servo Motor Theory
- DC Series vs Shunt Motor
- BLDC Motor vs PMSM Motor
- Induction Motors
- Introduction to Induction Motor
- Single-Phase Induction Motor
- 3-Phase Induction Motor
- Construction of 3-Phase Induction Motor
- 3-Phase Induction Motor on Load
- Characteristics of 3-Phase Induction Motor
- Speed Regulation and Speed Control
- Methods of Starting 3-Phase Induction Motors
- More on Induction Motors
- 3-Phase Induction Motor Working Principle
- 3-Phase Induction Motor Rotor Parameters
- Double Cage Induction Motor Equivalent Circuit
- Induction Motor Equivalent Circuit Models
- Slip Ring vs Squirrel Cage Induction Motors
- Single-Cage vs Double-Cage Induction Motor
- Induction Motor Equivalent Circuits
- Induction Motor Crawling & Cogging
- Induction Motor Blocked Rotor Test
- Induction Motor Circle Diagram
- 3-Phase Induction Motors Applications
- 3-Phase Induction Motors Torque Ratios
- Induction Motors Power Flow Diagram & Losses
- Determining Induction Motor Efficiency
- Induction Motor Speed Control by Pole-Amplitude Modulation
- Induction Motor Inverted or Rotor Fed
- High Torque Cage Motors
- Double-Cage Induction Motor Torque-Slip Characteristics
- 3-Phase Induction Motors Starting Torque
- 3-phase Induction Motor - Rotor Resistance Starter
- 3-phase Induction Motor Running Torque
- 3-Phase Induction Motor - Rotating Magnetic Field
- Isolated Induction Generator
- Capacitor-Start Induction Motor
- Capacitor-Start Capacitor-Run Induction Motor
- Winding EMFs in 3-Phase Induction Motors
- Split-Phase Induction Motor
- Shaded Pole Induction Motor
- Repulsion-Start Induction-Run Motor
- Repulsion Induction Motor
- PSC Induction Motor
- Single-Phase Induction Motor Performance Analysis
- Linear Induction Motor
- Single-Phase Induction Motor Testing
- 3-Phase Induction Motor Fault Types
- Synchronous Machines
- Introduction to 3-Phase Synchronous Machines
- Construction of Synchronous Machine
- Working of 3-Phase Alternator
- Armature Reaction in Synchronous Machines
- Output Power of 3-Phase Alternator
- Losses and Efficiency of an Alternator
- Losses and Efficiency of 3-Phase Alternator
- Working of 3-Phase Synchronous Motor
- Equivalent Circuit and Power Factor of Synchronous Motor
- Power Developed by Synchronous Motor
- More on Synchronous Machines
- AC Motor Types
- Induction Generator (Asynchronous Generator)
- Synchronous Speed Slip of 3-Phase Induction Motor
- Armature Reaction in Alternator at Leading Power Factor
- Armature Reaction in Alternator at Lagging Power Factor
- Stationary Armature vs Rotating Field Alternator Advantages
- Synchronous Impedance Method for Voltage Regulation
- Saturated & Unsaturated Synchronous Reactance
- Synchronous Reactance & Impedance
- Significance of Short Circuit Ratio in Alternator
- Hunting Effect Alternator
- Hydrogen Cooling in Synchronous Generators
- Excitation System of Synchronous Machine
- Equivalent Circuit Phasor Diagram of Synchronous Generator
- EMF Equation of Synchronous Generator
- Cooling Methods for Synchronous Generators
- Assumptions in Synchronous Impedance Method
- Armature Reaction at Unity Power Factor
- Voltage Regulation of Alternator
- Synchronous Generator with Infinite Bus Operation
- Zero Power Factor of Synchronous Generator
- Short Circuit Ratio Calculation of Synchronous Machines
- Speed-Frequency Relationship in Alternator
- Pitch Factor in Alternator
- Max Reactive Power in Synchronous Generators
- Power Flow Equations for Synchronous Generator
- Potier Triangle for Voltage Regulation in Alternators
- Parallel Operation of Alternators
- Load Sharing in Parallel Alternators
- Slip Test on Synchronous Machine
- Constant Flux Linkage Theorem
- Blondel's Two Reaction Theory
- Synchronous Machine Oscillations
- Ampere Turn Method for Voltage Regulation
- Salient Pole Synchronous Machine Theory
- Synchronization by Synchroscope
- Synchronization by Synchronizing Lamp Method
- Sudden Short Circuit in 3-Phase Alternator
- Short Circuit Transient in Synchronous Machines
- Power-Angle of Salient Pole Machines
- Prime-Mover Governor Characteristics
- Power Input of Synchronous Generator
- Power Output of Synchronous Generator
- Power Developed by Salient Pole Motor
- Phasor Diagrams of Cylindrical Rotor Moto
- Synchronous Motor Excitation Voltage Determination
- Hunting Synchronous Motor
- Self-Starting Synchronous Motor
- Unidirectional Torque Production in Synchronous Motor
- Effect of Load Change on Synchronous Motor
- Field Excitation Effect on Synchronous Motor
- Output Power of Synchronous Motor
- Input Power of Synchronous Motor
- V Curves & Inverted V Curves of Synchronous Motor
- Torque in Synchronous Motor
- Construction of 3-Phase Synchronous Motor
- Synchronous Motor
- Synchronous Condenser
- Power Flow in Synchronous Motor
- Types of Faults in Alternator
- Miscellaneous Topics
- Electrical Generator
- Determining Electric Motor Load
- Solid State Motor Starters
- Characteristics of Single-Phase Motor
- Types of AC Generators
- Three-Point Starter
- Four-Point Starter
- Ward Leonard Speed Control Method
- Pole Changing Method
- Stator Voltage Control Method
- DOL Starter
- Star-Delta Starter
- Hysteresis Motor
- 2-Phase & 3-Phase AC Servo Motors
- Repulsion Motor
- Reluctance Motor
- Stepper Motor
- PCB Motor
- Single-Stack Variable Reluctance Stepper Motor
- Schrage Motor
- Hybrid Schrage Motor
- Multi-Stack Variable Reluctance Stepper Motor
- Universal Motor
- Step Angle in Stepper Motor
- Stepper Motor Torque-Pulse Rate Characteristics
- Distribution Factor
- Electrical Machines Basic Terms
- Synchronizing Torque Coefficient
- Synchronizing Power Coefficient
- Metadyne
- Motor Soft Starter
- CVT vs PT
- Metering CT vs Protection CT
- Stator and Rotor in Electrical Machines
- Electric Motor Winding
- Electric Motor
- Useful Resources
- Quick Guide
- Resources
- Discussion
What are the Output Power of a Synchronous Motor?
Consider a synchronous motor is operating at lagging power factor. The voltage equation of a synchronous motor is given by,
$$\mathrm{V \:=\: E_{f} \:+\: I_{a}Z_{S} \:\:\:\:\dotso\: (1)}$$
Where,
$$\mathrm{V \:=\: V\:\angle 0° \: and \: E_{f} \:=\: E_{f} \: \angle - \delta}$$
$$\mathrm{\therefore \: I_{a} \:=\: \frac{V \:-\: E_{f}}{Z_{S}} \:\:\:\: \dotso \: (2)}$$
$$\mathrm{\Rightarrow \: I_{a} \:=\: \frac{V \angle 0° \:-\: E_{f} \:-\: \delta}{Z_{S}\angle \theta_{Z}} \:=\: \frac{V}{Z_{S}}\:\angle -\theta_{Z} \:-\: \frac{E_{f}}{Z_{S}} \: \angle -(\delta \:+\: \theta_{Z})}$$
$$\mathrm{\therefore \: I^{*}_{a} \:=\: \frac{V}{Z_{S}} \: \angle \theta_{Z} \:-\: \frac{E_{f}}{Z_{S}} \: \angle(\delta \:+\: \theta_{Z}) \:\:\:\:\dotso\: (3)}$$
Complex Power Output per Phase of a Synchronous Motor
The complex power output of a synchronous motor is given by,
$$\mathrm{S_{o} \:=\: E_{f}I^{*}_{a} \:=\: P_{o} \:+\: jQ_{o} \:\:\:\: \dotso\: (4)}$$
$$\mathrm{\Rightarrow\:S_{o} \:=\: E_{f} \: \angle -\delta \left(\frac{V}{Z_{S}} \:\angle \theta_{Z} \:-\: \frac{E_{f}}{Z_{S}} \: \angle(\delta \:+\: \theta_{Z})\right)}$$
$$\mathrm{\Rightarrow \: S_{o} \:=\: \left(\frac{VE_{f}}{Z_{S}}\:\cos(\theta_{Z} \:-\: \delta) \:+\: j \: \frac{VE_{f}}{Z_{S}} \:\sin(\theta_{Z} \:-\: \delta)\right) \:-\: \left(\frac{E^{2}_{f}}{Z_{S}} \: \cos \theta_{Z} \:+\: j\: \frac{E^{2}_{f}}{Z_{S}}\:\sin \theta_{Z}\right)}$$
$$\mathrm{\therefore\:S_{o}\:=\:\left(\frac{VE_{f}}{Z_{S}}cos(\theta_{Z} \:-\: \delta) \:-\: \frac{E^{2}_{f}}{Z_{S}} \: \cos\theta_{Z}\right) \:+\:j\left(\frac{VE_{f}}{Z_{S}} \: \sin(\theta_{Z} \:-\:\delta)\:-\: \frac{E^{2}_{f}}{Z_{S}} \: \sin\theta_{Z}\right) \:\:\:\:\dotso\: (5)}$$
Real Power Output per Phase of the Synchronous Motor
By equating the real part of equation(5), we get the real power output of the synchronous motor, i.e.,
$$\mathrm{P_{o}\:=\:\frac{VE_{f}}{Z_{S}}\:\cos(\theta_{Z} \:-\:\delta)\:-\:\frac{E^{2}_{f}}{Z_{S}}\:\cos\theta_{Z}}$$
$$\mathrm{\because\:\cos\theta_{Z}\:=\:\frac{R_{a}}{Z_{S}}}$$
$$\mathrm{\therefore\:P_{o}\:=\:\frac{VE_{f}}{Z_{S}}\:\cos(\theta_{Z} \:-\:\delta)\:-\:\frac{E^{2}_{f}}{Z^{2}_{S}}R_{a} \:\:\:\:\dotso\: (6)}$$
But,
$$\mathrm{\theta_{Z}\:=\:(90°\:-\:\alpha_{Z});\:\cos(\theta_{Z}\:-\:\delta)\:=\:\cos(90°\:-\:\delta\:+ \: \alpha_{Z}) \:=\: \sin(\delta\:+\:\alpha_{Z})}$$
$$\mathrm{\therefore\:P_{o}\:=\:\frac{VE_{f}}{Z_{S}}\:\sin(\delta\:+\:\alpha_{Z})\:-\:\frac{E^{2}_{f}}{Z^{2}_{S}}R_{a} \:\:\:\:\dotso\: (7)}$$
Reactive Power Output per Phase of the Synchronous Motor
By equating the imaginary part of Equation(5), we obtain the reactive power output of the synchronous motor, i.e.,
$$\mathrm{Q_{o}\:=\:\frac{VE_{f}}{Z_{S}}\:\sin(\theta_{Z}\:-\:\delta)\:-\:\frac{E^{2}_{f}}{Z_{S}}\:\sin\theta_{Z}}$$
$$\mathrm{\because\:\sin\theta_{Z}\:=\:\frac{X_{S}}{Z_{S}}}$$
$$\mathrm{\therefore\:Q_{o}\:=\:\frac{VE_{f}}{Z_{S}}\:\sin(\theta_{Z}\:-\:\delta)\:-\:\frac{E^{2}_{f}}{Z^{2}_{S}}\:R_{a} \:\:\:\:\dotso\: (8)}$$
But,
$$\mathrm{\theta_{Z} \: = \:(90° \:-\: \alpha_{Z}); \:\sin(\theta_{Z} \:-\: \delta) \:=\: \sin(90°\:-\:\delta\:+\: \alpha_{Z}) \:=\:\cos(\delta\:+\:\alpha_{Z})}$$
$$\mathrm{\therefore \: Q_{o} \:=\: \frac{VE_{f}}{Z_{S}}\:\cos(\delta\:+\:\alpha_{Z})\:-\:\frac{E^{2}_{f}}{Z^{2}_{S}} \: X_{S} \:\:\:\:\dotso\: (9)}$$
Also, for a synchronous motor, the output power available at the shaft is given by,
$$\mathrm{P_{sh}\:=\:P_{o}\:-\:Rotational \: losses \:\:\:\:\dotso\: (10)}$$
Where,po is the mechanical power (or gross power) developed by the motor. The rotational losses include core losses, friction and windage losses.