
- Electrical Machines - Home
- Basic Concepts
- Electromechanical Energy Conversion
- Energy Stored in Magnetic Field
- Singly-Excited and Doubly Excited Systems
- Rotating Electrical Machines
- Electrical Machines Types
- Faraday’s Laws of Electromagnetic Induction
- Concept of Induced EMF
- Fleming's Left Hand and Right Hand Rules
- Transformers
- Electrical Transformer
- Construction of Transformer
- EMF Equation of Transformer
- Turns Ratio and Voltage Transformation Ratio
- Ideal Transformer
- Practical Transformer
- Ideal and Practical Transformers
- Transformer on DC
- Losses in a Transformer
- Efficiency of Transformer
- 3-Phase Transformer
- Types of Transformers
- More on Transformers
- Transformer Working Principle
- Single-Phase Transformer Working Principle
- 3-Phase Transformer Principle
- 3-Phase Induction Motor Torque-Slip
- 3-Phase Induction Motor Torque-Speed
- 3-Phase Transformer Harmonics
- Double-Star Connection (3-6 Phase)
- Double-delta Connection (3-6 Phase)
- Transformer Ratios
- Voltage Regulation
- Delta-Star Connection (3-Phase)
- Star-Delta Connection (3-Phase)
- Autotransformer Conversion
- Back-to-back Test (Sumpner's Test)
- Transformer Voltage Drop
- Autotransformer Output
- Open and Short Circuit Test
- 3-Phase Autotransformer
- Star-Star Connection
- 6-Phase Diametrical Connections
- Circuit Test (Three-Winding)
- Potential Transformer
- Transformers Parallel Operation
- Open Delta (V-V) Connection
- Autotransformer
- Current Transformer
- No-Load Current Wave
- Transformer Inrush Current
- Transformer Vector Groups
- 3 to 12-Phase Transformers
- Scott-T Transformer Connection
- Transformer kVA Rating
- Three-Winding Transformer
- Delta-Delta Connection Transformer
- Transformer DC Supply Issue
- Equivalent Circuit Transformer
- Simplified Equivalent Circuit of Transformer
- Transformer No-Load Condition
- Transformer Load Condition
- OTI WTI Transformer
- CVT Transformer
- Isolation vs Regular Transformer
- Dry vs Oil-Filled
- DC Machines
- Construction of DC Machines
- Types of DC Machines
- Working Principle of DC Generator
- EMF Equation of DC Generator
- Derivation of EMF Equation DC Generator
- Types of DC Generators
- Working Principle of DC Motor
- Back EMF in DC Motor
- Types of DC Motors
- Losses in DC Machines
- Applications of DC Machines
- More on DC Machines
- DC Generator
- DC Generator Armature Reaction
- DC Generator Commutator Action
- Stepper vs DC Motors
- DC Shunt Generators Critical Resistance
- DC Machines Commutation
- DC Motor Characteristics
- Synchronous Generator Working Principle
- DC Generator Characteristics
- DC Generator Demagnetizing & Cross-Magnetizing
- DC Motor Voltage & Power Equations
- DC Generator Efficiency
- Electric Breaking of DC Motors
- DC Motor Efficiency
- Four Quadrant Operation of DC Motors
- Open Circuit Characteristics of DC Generators
- Voltage Build-Up in Self-Excited DC Generators
- Types of Armature Winding in DC Machines
- Torque in DC Motors
- Swinburne’s Test of DC Machine
- Speed Control of DC Shunt Motor
- Speed Control of DC Series Motor
- DC Motor of Speed Regulation
- Hopkinson's Test
- Permanent Magnet DC Motor
- Permanent Magnet Stepper Motor
- DC Servo Motor Theory
- DC Series vs Shunt Motor
- BLDC Motor vs PMSM Motor
- Induction Motors
- Introduction to Induction Motor
- Single-Phase Induction Motor
- 3-Phase Induction Motor
- Construction of 3-Phase Induction Motor
- 3-Phase Induction Motor on Load
- Characteristics of 3-Phase Induction Motor
- Speed Regulation and Speed Control
- Methods of Starting 3-Phase Induction Motors
- More on Induction Motors
- 3-Phase Induction Motor Working Principle
- 3-Phase Induction Motor Rotor Parameters
- Double Cage Induction Motor Equivalent Circuit
- Induction Motor Equivalent Circuit Models
- Slip Ring vs Squirrel Cage Induction Motors
- Single-Cage vs Double-Cage Induction Motor
- Induction Motor Equivalent Circuits
- Induction Motor Crawling & Cogging
- Induction Motor Blocked Rotor Test
- Induction Motor Circle Diagram
- 3-Phase Induction Motors Applications
- 3-Phase Induction Motors Torque Ratios
- Induction Motors Power Flow Diagram & Losses
- Determining Induction Motor Efficiency
- Induction Motor Speed Control by Pole-Amplitude Modulation
- Induction Motor Inverted or Rotor Fed
- High Torque Cage Motors
- Double-Cage Induction Motor Torque-Slip Characteristics
- 3-Phase Induction Motors Starting Torque
- 3-phase Induction Motor - Rotor Resistance Starter
- 3-phase Induction Motor Running Torque
- 3-Phase Induction Motor - Rotating Magnetic Field
- Isolated Induction Generator
- Capacitor-Start Induction Motor
- Capacitor-Start Capacitor-Run Induction Motor
- Winding EMFs in 3-Phase Induction Motors
- Split-Phase Induction Motor
- Shaded Pole Induction Motor
- Repulsion-Start Induction-Run Motor
- Repulsion Induction Motor
- PSC Induction Motor
- Single-Phase Induction Motor Performance Analysis
- Linear Induction Motor
- Single-Phase Induction Motor Testing
- 3-Phase Induction Motor Fault Types
- Synchronous Machines
- Introduction to 3-Phase Synchronous Machines
- Construction of Synchronous Machine
- Working of 3-Phase Alternator
- Armature Reaction in Synchronous Machines
- Output Power of 3-Phase Alternator
- Losses and Efficiency of an Alternator
- Losses and Efficiency of 3-Phase Alternator
- Working of 3-Phase Synchronous Motor
- Equivalent Circuit and Power Factor of Synchronous Motor
- Power Developed by Synchronous Motor
- More on Synchronous Machines
- AC Motor Types
- Induction Generator (Asynchronous Generator)
- Synchronous Speed Slip of 3-Phase Induction Motor
- Armature Reaction in Alternator at Leading Power Factor
- Armature Reaction in Alternator at Lagging Power Factor
- Stationary Armature vs Rotating Field Alternator Advantages
- Synchronous Impedance Method for Voltage Regulation
- Saturated & Unsaturated Synchronous Reactance
- Synchronous Reactance & Impedance
- Significance of Short Circuit Ratio in Alternator
- Hunting Effect Alternator
- Hydrogen Cooling in Synchronous Generators
- Excitation System of Synchronous Machine
- Equivalent Circuit Phasor Diagram of Synchronous Generator
- EMF Equation of Synchronous Generator
- Cooling Methods for Synchronous Generators
- Assumptions in Synchronous Impedance Method
- Armature Reaction at Unity Power Factor
- Voltage Regulation of Alternator
- Synchronous Generator with Infinite Bus Operation
- Zero Power Factor of Synchronous Generator
- Short Circuit Ratio Calculation of Synchronous Machines
- Speed-Frequency Relationship in Alternator
- Pitch Factor in Alternator
- Max Reactive Power in Synchronous Generators
- Power Flow Equations for Synchronous Generator
- Potier Triangle for Voltage Regulation in Alternators
- Parallel Operation of Alternators
- Load Sharing in Parallel Alternators
- Slip Test on Synchronous Machine
- Constant Flux Linkage Theorem
- Blondel's Two Reaction Theory
- Synchronous Machine Oscillations
- Ampere Turn Method for Voltage Regulation
- Salient Pole Synchronous Machine Theory
- Synchronization by Synchroscope
- Synchronization by Synchronizing Lamp Method
- Sudden Short Circuit in 3-Phase Alternator
- Short Circuit Transient in Synchronous Machines
- Power-Angle of Salient Pole Machines
- Prime-Mover Governor Characteristics
- Power Input of Synchronous Generator
- Power Output of Synchronous Generator
- Power Developed by Salient Pole Motor
- Phasor Diagrams of Cylindrical Rotor Moto
- Synchronous Motor Excitation Voltage Determination
- Hunting Synchronous Motor
- Self-Starting Synchronous Motor
- Unidirectional Torque Production in Synchronous Motor
- Effect of Load Change on Synchronous Motor
- Field Excitation Effect on Synchronous Motor
- Output Power of Synchronous Motor
- Input Power of Synchronous Motor
- V Curves & Inverted V Curves of Synchronous Motor
- Torque in Synchronous Motor
- Construction of 3-Phase Synchronous Motor
- Synchronous Motor
- Synchronous Condenser
- Power Flow in Synchronous Motor
- Types of Faults in Alternator
- Miscellaneous Topics
- Electrical Generator
- Determining Electric Motor Load
- Solid State Motor Starters
- Characteristics of Single-Phase Motor
- Types of AC Generators
- Three-Point Starter
- Four-Point Starter
- Ward Leonard Speed Control Method
- Pole Changing Method
- Stator Voltage Control Method
- DOL Starter
- Star-Delta Starter
- Hysteresis Motor
- 2-Phase & 3-Phase AC Servo Motors
- Repulsion Motor
- Reluctance Motor
- Stepper Motor
- PCB Motor
- Single-Stack Variable Reluctance Stepper Motor
- Schrage Motor
- Hybrid Schrage Motor
- Multi-Stack Variable Reluctance Stepper Motor
- Universal Motor
- Step Angle in Stepper Motor
- Stepper Motor Torque-Pulse Rate Characteristics
- Distribution Factor
- Electrical Machines Basic Terms
- Synchronizing Torque Coefficient
- Synchronizing Power Coefficient
- Metadyne
- Motor Soft Starter
- CVT vs PT
- Metering CT vs Protection CT
- Stator and Rotor in Electrical Machines
- Electric Motor Winding
- Electric Motor
- Useful Resources
- Quick Guide
- Resources
- Discussion
Power Input of Synchronous Generator or Alternator
The circuit model of a cylindrical rotor synchronous generator or alternator is shown in Figure-1.

Let,
- V = Terminal voltage per phase
- Ef = Excitation voltage per phase
- Ia = Armature current
- δ = Load angle (between V and Ef )
By applying KVL in the circuit, we get,
$$\mathrm{E_{f} \:=\: V \:+\: I_{a}Z_{s} \:\:\:\dotso\: (1)}$$
$$\mathrm{\therefore\:I_{a} \:=\:\frac{E_{f} \:-\: V}{Z_{s}} \:\:\:\dotso\: (2)}$$
Where,
$$\mathrm{\text{Synchronous impedance, } \:Z_{s}\:=\:R_{a}\:+\:jX_{a}\:=\:Z_{s}\:\angle \theta_{z}\:\:\:\dotso\:(3)}$$
Also, for a synchronous generator the excitation voltage (Ef) leads the terminal voltage (V) by the load angle (δ). Thus,
$$\mathrm{V \:=\: V \:\angle 0°\:\:then\:\:E_{f} \:=\: E_{f} \:\angle \delta}$$
Complex Power Input to the Alternator per Phase
The complex input power to an alternator per phase is given by,
$$\mathrm{S_{ig} \:=\: P_{ig} \:+\: jQ_{ig} \:=\: E_{f}{I^{*}_{a}}}$$
$$\mathrm{\Rightarrow \: S_{ig} \:=\: E_{f}\left(\frac{E_{f} \:-\: V}{Z_{s}}\right)^{*} \:=\: E_{f} \: \angle \delta \left(\frac{E_{f}\angle \delta \:-\: V \:\angle 0°}{Z_{s} \:\angle \theta_{z}} \right)^{*}}$$
$$\mathrm{\Rightarrow\:S_{ig} \:=\: E_{f}\:\angle \delta \left(\frac{E_{f}}{Z_{s}}\:\angle(\delta \:-\: \theta_{z}) \:-\: \frac{V}{Z_{s}}\:\angle -\theta_{z}\right)^{*}}$$
$$\mathrm{\Rightarrow\:S_{ig} \:=\: E_{f} \:\angle \delta \left(\frac{E_{f}}{Z_{s}}\:\angle(\theta_{z} \:-\: \delta) \:-\: \frac{V}{Z_{s}}\:\angle \theta_{z}\right)}$$
$$\mathrm{\Rightarrow\:S_{ig} \:=\: \frac{E^{2}_{f}}{Z_{s}}\:\angle\theta_{z} \:-\:\frac{VE_{f}}{Z_{s}}\:\angle(\theta_{z} \:+\: \delta)}$$
$$\mathrm{\therefore \: S_{ig} \:=\: P_{ig} \:+\: jQ_{ig}}$$
$$\mathrm{=\: \frac{E^{2}_{f}}{Z_{s}}(\cos \: \theta_{z} \:+\: j\:\sin\:\theta_{z })}$$
$$\mathrm{-\left[\frac{VE_{f}}{Z_{s}}\:\cos(\theta_{z} \:+\: \delta) \:+\: j\frac{VE_{f}}{Z_{s}}\:\sin(\theta_{z} \:+\: \delta)\right] \:\:\:\dotso\: (4)}$$
Real Power Input to the Alternator per Phase
Equating real parts of the eq. (4), we get the expression for real power input (Pig) to the alternator,
$$\mathrm{P_{ig} \:=\: \frac{{E^{2}_{f}}}{Z_{s}}\:\cos\theta_{z}\:-\:\frac{VE_{f}}{Z_{s}}\:\cos(\theta_{z}\:+\:\delta)}$$

From the impedance triangle shown in Figure-2,
$$\mathrm{\cos\theta_{z}\:=\:\frac{R_{a}}{Z_{s}}\:\:and \:\:\theta_{z} \:=\: 90° \:-\: \alpha_{z}}$$
$$\mathrm{\therefore\:P_{ig} \:=\:\frac{E^{2}_{f}}{Z^{2}_{s}}R_{a}\:-\:\frac{VE_{f}}{Z_{s}}\:\cos(90°\:+\:\delta \:-\: \alpha_{z})}$$
$$\mathrm{\therefore\:P_{ig}\:=\:\frac{E^{2}_{f}}{Z^{2}_{s}}R_{a}\:+\:\frac{VE_{f}}{Z_{s}}\sin(\delta \:-\: \alpha_{z}) \:\:\:\dotso\: (5)}$$
Reactive Power Input to the Alternator per Phase
Equating imaginary parts of Eqn. (4), we obtain the reactive power input (Qig) to the alternator,
$$\mathrm{Q_{ig} \:=\:\frac{E^{2}_{f}}{Z_{s}}\sin\theta_{z}\:-\:\frac{VE_{f}}{Z_{s}}\sin(\theta_{z} \:+\: \delta)}$$
From the impedance triangle shown in Figure-2,
$$\mathrm{\sin\:\theta_{z}\:=\:\frac{X_{s}}{Z_{s}}\:\:and\:\:\theta_{z}\:=\: 90° \:-\: \alpha_{z}}$$
$$\mathrm{\therefore\:Q_{ig}\:=\:\frac{E^{2}_{f}}{Z^{2}_{s}}X_{s}\:-\:\frac{VE_{f}}{Z_{s}}\sin(90° \:+\: \delta \:-\: \alpha_{z})}$$
$$\mathrm{\Rightarrow\:Q_{ig}\:=\:\frac{E^{2}_{f}}{Z^{2}_{s}}X_{s}\:-\:\frac{VE_{f}}{Z_{s}}\cos(\delta \:-\: \alpha_{z}) \:\:\:\dotso\: (6)}$$
Note – The total mechanical power input to the alternator is
$$\mathrm{\text{Mechanical power input } \:=\: P_{ig} \:+\: \text{ rotational losses}}$$
Condition for Maximum Power Input to the Alternator per Phase
For the maximum power input to the alternator,
$$\mathrm{\frac{dP_{ig}}{d\delta}\:=\: 0\:\:and\:\:\frac{d^{2}P_{ig}}{{d\delta}^{2}}\:\lt\:0}$$
$$\mathrm{\therefore\:\frac{d}{d\delta}\:\left(\frac{E^{2}_{f}}{Z^{2}_{s}}R_{a} \:+\: \frac{VE_{f}}{Z_{s}}\:\sin(\delta \: - \: \alpha_{z})\right)\:= \:0}$$
$$\mathrm{0 \:+\:\frac{VE_{f}}{Z_{s}}\:\cos(\delta \:-\: \alpha_{z}) \:=\: 0}$$
$$\mathrm{\Rightarrow\:\cos(\delta \:-\: \alpha_{z}) \:=\: 0}$$
$$\mathrm{\Rightarrow\:\delta \:-\: \alpha_{z} \:=\: 90°}$$
$$\mathrm{\Rightarrow\:\delta \:=\: 90° \:+\: \alpha_{z} \:=\: 90° \:+\: (90° \:-\: \theta_{z}) \:=\: 180° \:-\: \theta_{z}}$$
Thus for maximum power input to the alternator,
$$\mathrm{\text{Load angle }(\delta) \:=\: 180° \:-\: \text{ Impedance angle }(\theta_{z}) \:\:\:\dotso\: (7)}$$
Hence, from Eqns. (5) and (7), the maximum power input to the alternator per phase is
$$\mathrm{P_{ig(max)} \:=\:\frac{E^{2}_{f}}{Z^{2}_{s}}R_{a} \:+\:\frac{VE_{f}}{Z_{s}} \:\:\:\dotso\: (8)}$$