
- Electrical Machines - Home
- Basic Concepts
- Electromechanical Energy Conversion
- Energy Stored in Magnetic Field
- Singly-Excited and Doubly Excited Systems
- Rotating Electrical Machines
- Electrical Machines Types
- Faraday’s Laws of Electromagnetic Induction
- Concept of Induced EMF
- Fleming's Left Hand and Right Hand Rules
- Transformers
- Electrical Transformer
- Construction of Transformer
- EMF Equation of Transformer
- Turns Ratio and Voltage Transformation Ratio
- Ideal Transformer
- Practical Transformer
- Ideal and Practical Transformers
- Transformer on DC
- Losses in a Transformer
- Efficiency of Transformer
- 3-Phase Transformer
- Types of Transformers
- More on Transformers
- Transformer Working Principle
- Single-Phase Transformer Working Principle
- 3-Phase Transformer Principle
- 3-Phase Induction Motor Torque-Slip
- 3-Phase Induction Motor Torque-Speed
- 3-Phase Transformer Harmonics
- Double-Star Connection (3-6 Phase)
- Double-delta Connection (3-6 Phase)
- Transformer Ratios
- Voltage Regulation
- Delta-Star Connection (3-Phase)
- Star-Delta Connection (3-Phase)
- Autotransformer Conversion
- Back-to-back Test (Sumpner's Test)
- Transformer Voltage Drop
- Autotransformer Output
- Open and Short Circuit Test
- 3-Phase Autotransformer
- Star-Star Connection
- 6-Phase Diametrical Connections
- Circuit Test (Three-Winding)
- Potential Transformer
- Transformers Parallel Operation
- Open Delta (V-V) Connection
- Autotransformer
- Current Transformer
- No-Load Current Wave
- Transformer Inrush Current
- Transformer Vector Groups
- 3 to 12-Phase Transformers
- Scott-T Transformer Connection
- Transformer kVA Rating
- Three-Winding Transformer
- Delta-Delta Connection Transformer
- Transformer DC Supply Issue
- Equivalent Circuit Transformer
- Simplified Equivalent Circuit of Transformer
- Transformer No-Load Condition
- Transformer Load Condition
- OTI WTI Transformer
- CVT Transformer
- Isolation vs Regular Transformer
- Dry vs Oil-Filled
- DC Machines
- Construction of DC Machines
- Types of DC Machines
- Working Principle of DC Generator
- EMF Equation of DC Generator
- Derivation of EMF Equation DC Generator
- Types of DC Generators
- Working Principle of DC Motor
- Back EMF in DC Motor
- Types of DC Motors
- Losses in DC Machines
- Applications of DC Machines
- More on DC Machines
- DC Generator
- DC Generator Armature Reaction
- DC Generator Commutator Action
- Stepper vs DC Motors
- DC Shunt Generators Critical Resistance
- DC Machines Commutation
- DC Motor Characteristics
- Synchronous Generator Working Principle
- DC Generator Characteristics
- DC Generator Demagnetizing & Cross-Magnetizing
- DC Motor Voltage & Power Equations
- DC Generator Efficiency
- Electric Breaking of DC Motors
- DC Motor Efficiency
- Four Quadrant Operation of DC Motors
- Open Circuit Characteristics of DC Generators
- Voltage Build-Up in Self-Excited DC Generators
- Types of Armature Winding in DC Machines
- Torque in DC Motors
- Swinburne’s Test of DC Machine
- Speed Control of DC Shunt Motor
- Speed Control of DC Series Motor
- DC Motor of Speed Regulation
- Hopkinson's Test
- Permanent Magnet DC Motor
- Permanent Magnet Stepper Motor
- DC Servo Motor Theory
- DC Series vs Shunt Motor
- BLDC Motor vs PMSM Motor
- Induction Motors
- Introduction to Induction Motor
- Single-Phase Induction Motor
- 3-Phase Induction Motor
- Construction of 3-Phase Induction Motor
- 3-Phase Induction Motor on Load
- Characteristics of 3-Phase Induction Motor
- Speed Regulation and Speed Control
- Methods of Starting 3-Phase Induction Motors
- More on Induction Motors
- 3-Phase Induction Motor Working Principle
- 3-Phase Induction Motor Rotor Parameters
- Double Cage Induction Motor Equivalent Circuit
- Induction Motor Equivalent Circuit Models
- Slip Ring vs Squirrel Cage Induction Motors
- Single-Cage vs Double-Cage Induction Motor
- Induction Motor Equivalent Circuits
- Induction Motor Crawling & Cogging
- Induction Motor Blocked Rotor Test
- Induction Motor Circle Diagram
- 3-Phase Induction Motors Applications
- 3-Phase Induction Motors Torque Ratios
- Induction Motors Power Flow Diagram & Losses
- Determining Induction Motor Efficiency
- Induction Motor Speed Control by Pole-Amplitude Modulation
- Induction Motor Inverted or Rotor Fed
- High Torque Cage Motors
- Double-Cage Induction Motor Torque-Slip Characteristics
- 3-Phase Induction Motors Starting Torque
- 3-phase Induction Motor - Rotor Resistance Starter
- 3-phase Induction Motor Running Torque
- 3-Phase Induction Motor - Rotating Magnetic Field
- Isolated Induction Generator
- Capacitor-Start Induction Motor
- Capacitor-Start Capacitor-Run Induction Motor
- Winding EMFs in 3-Phase Induction Motors
- Split-Phase Induction Motor
- Shaded Pole Induction Motor
- Repulsion-Start Induction-Run Motor
- Repulsion Induction Motor
- PSC Induction Motor
- Single-Phase Induction Motor Performance Analysis
- Linear Induction Motor
- Single-Phase Induction Motor Testing
- 3-Phase Induction Motor Fault Types
- Synchronous Machines
- Introduction to 3-Phase Synchronous Machines
- Construction of Synchronous Machine
- Working of 3-Phase Alternator
- Armature Reaction in Synchronous Machines
- Output Power of 3-Phase Alternator
- Losses and Efficiency of an Alternator
- Losses and Efficiency of 3-Phase Alternator
- Working of 3-Phase Synchronous Motor
- Equivalent Circuit and Power Factor of Synchronous Motor
- Power Developed by Synchronous Motor
- More on Synchronous Machines
- AC Motor Types
- Induction Generator (Asynchronous Generator)
- Synchronous Speed Slip of 3-Phase Induction Motor
- Armature Reaction in Alternator at Leading Power Factor
- Armature Reaction in Alternator at Lagging Power Factor
- Stationary Armature vs Rotating Field Alternator Advantages
- Synchronous Impedance Method for Voltage Regulation
- Saturated & Unsaturated Synchronous Reactance
- Synchronous Reactance & Impedance
- Significance of Short Circuit Ratio in Alternator
- Hunting Effect Alternator
- Hydrogen Cooling in Synchronous Generators
- Excitation System of Synchronous Machine
- Equivalent Circuit Phasor Diagram of Synchronous Generator
- EMF Equation of Synchronous Generator
- Cooling Methods for Synchronous Generators
- Assumptions in Synchronous Impedance Method
- Armature Reaction at Unity Power Factor
- Voltage Regulation of Alternator
- Synchronous Generator with Infinite Bus Operation
- Zero Power Factor of Synchronous Generator
- Short Circuit Ratio Calculation of Synchronous Machines
- Speed-Frequency Relationship in Alternator
- Pitch Factor in Alternator
- Max Reactive Power in Synchronous Generators
- Power Flow Equations for Synchronous Generator
- Potier Triangle for Voltage Regulation in Alternators
- Parallel Operation of Alternators
- Load Sharing in Parallel Alternators
- Slip Test on Synchronous Machine
- Constant Flux Linkage Theorem
- Blondel's Two Reaction Theory
- Synchronous Machine Oscillations
- Ampere Turn Method for Voltage Regulation
- Salient Pole Synchronous Machine Theory
- Synchronization by Synchroscope
- Synchronization by Synchronizing Lamp Method
- Sudden Short Circuit in 3-Phase Alternator
- Short Circuit Transient in Synchronous Machines
- Power-Angle of Salient Pole Machines
- Prime-Mover Governor Characteristics
- Power Input of Synchronous Generator
- Power Output of Synchronous Generator
- Power Developed by Salient Pole Motor
- Phasor Diagrams of Cylindrical Rotor Moto
- Synchronous Motor Excitation Voltage Determination
- Hunting Synchronous Motor
- Self-Starting Synchronous Motor
- Unidirectional Torque Production in Synchronous Motor
- Effect of Load Change on Synchronous Motor
- Field Excitation Effect on Synchronous Motor
- Output Power of Synchronous Motor
- Input Power of Synchronous Motor
- V Curves & Inverted V Curves of Synchronous Motor
- Torque in Synchronous Motor
- Construction of 3-Phase Synchronous Motor
- Synchronous Motor
- Synchronous Condenser
- Power Flow in Synchronous Motor
- Types of Faults in Alternator
- Miscellaneous Topics
- Electrical Generator
- Determining Electric Motor Load
- Solid State Motor Starters
- Characteristics of Single-Phase Motor
- Types of AC Generators
- Three-Point Starter
- Four-Point Starter
- Ward Leonard Speed Control Method
- Pole Changing Method
- Stator Voltage Control Method
- DOL Starter
- Star-Delta Starter
- Hysteresis Motor
- 2-Phase & 3-Phase AC Servo Motors
- Repulsion Motor
- Reluctance Motor
- Stepper Motor
- PCB Motor
- Single-Stack Variable Reluctance Stepper Motor
- Schrage Motor
- Hybrid Schrage Motor
- Multi-Stack Variable Reluctance Stepper Motor
- Universal Motor
- Step Angle in Stepper Motor
- Stepper Motor Torque-Pulse Rate Characteristics
- Distribution Factor
- Electrical Machines Basic Terms
- Synchronizing Torque Coefficient
- Synchronizing Power Coefficient
- Metadyne
- Motor Soft Starter
- CVT vs PT
- Metering CT vs Protection CT
- Stator and Rotor in Electrical Machines
- Electric Motor Winding
- Electric Motor
- Useful Resources
- Quick Guide
- Resources
- Discussion
Power Developed by Salient Pole Synchronous Motor
Power Developed by Salient Pole Synchronous Motor
The complex power input per phase of the synchronous motor is,
$$\mathrm{S_{1\phi} \:=\: VI^{*}_{a} \:\:\:\:\dotso\: (1)}$$
Taking excitation voltage (Ef) as the reference phasor, then,
$$\mathrm{V \:=\: V\:\angle -\delta \:=\:V\:\cos\delta \:-\: jV\:\sin\delta \:\:\:\:\dotso\: (2)}$$
$$\mathrm{I_{a}\:=\:I_{q}\:-\:jI_{d}}$$
$$\mathrm{\therefore\:I^{*}_{a}\:=\:I_{q}\:+\:jI_{d} \:\:\:\:\dotso\: (3)}$$
Hence, from Eqns.(1),(2)&(3), we get,
$$\mathrm{S_{1\phi}\:=\:(V\:\cos\delta\:-\:jV\:\sin\delta)\:(I_{q}\:+\:jI_{d}) \:\:\:\:\dotso\: (4)}$$
For a salient-pole synchronous motor, the quadrature-axis current and direc taxis current are given by,
$$\mathrm{I_{q}\:=\:\frac{V\:\sin\delta}{X_{q}} \:\:\:\:\dotso\: (5)}$$
$$\mathrm{I_{d}\:=\:\frac{E_{f}\:-\:V\:\cos\delta}{X_{d}} \:\:\:\:\dotso\: (6)}$$
Substituting the values of Iq and Id in Eqn.(4), we have,
$$\mathrm{S_{1\phi}\:=\:(V\:\cos\delta\:-\:jV\:\sin\delta)\left(\frac{V\sin\delta}{X_{q}}\:+\:j\frac{E_{f}\:-\:V\:\cos \delta}{X_{d}}\right)}$$
$$\mathrm{\Rightarrow\:S_{1\phi}\:=\:\left(\frac{v^{2}}{X_{q}}\sin\delta\cos\delta\:+\:\frac{VE_{f}}{X_{d}}\sin\delta \:-\: \frac{v^{2}}{X_{d}}\sin\delta\cos\delta\right) \:+\: j\left(\frac{VE_{f}}{X_{d}}\cos\delta\:-\:\frac{V^{2}}{X_{d}} \cos^{2}\delta\:-\:\frac{V^{2}}{X_{d}}\sin^{2}\delta\right)}$$
$$\mathrm{\Rightarrow\:S_{1\phi}\:=\:\left[\frac{VE_{f}}{X_{d}}\sin\delta\:+\:\frac{V^{2}}{2}\left(\frac{1}{X_{q}} \:-\: \frac{1}{X_{d}}\right)\sin 2\delta\right] \:+\: j\left[\frac{VE_{f}}{X_{d}}\cos\delta\:-\:\frac{v^{2}}{2X_{d}}(1\:+\:\cos 2\delta)\:-\:\frac{v^{2}}{2X_{d}}(1\:-\:\cos 2\delta)\right]}$$
$$\mathrm{\Rightarrow\:S_{1\phi}\:=\:\left[\frac{VE_{f}}{X_{d}}\sin\delta \:+\: \frac{V^{2}}{2}\left(\frac{1}{X_{q}} \:-\: \frac{1}{X_{d}}\right)\sin 2\delta\right] \:+\: j\left[\frac{VE_{f}}{X_{d}}\cos\delta \:-\: \frac{v^{2}}{2X_{d}X_{q}} \left\{(X_{d} \:+\: X_{q}) \:-\: (X_{d}\:-\:X_{q})\cos 2\delta\right\}\right] \:\:\:\:\dotso\: (7)}$$
Also,
$$\mathrm{S_{1\phi} \:=\:P_{1\phi}\:+\:jQ_{1\phi} \:\:\:\:\dotso\: (8)}$$
Comparing Eqns.(7)&(8), we get the real power per phase in watts,
$$\mathrm{P_{1\phi}\:=\:\frac{VE_{f}}{X_{d}}\sin\delta\:+\:\frac{V^{2}}{2}\left(\frac{1}{X_{q}}\:-\: \frac{1}{X_{d}} \right)\:\sin 2\delta \:\:\:\:\dotso\: (9)}$$
Thus, the total real power for three phases is,
$$\mathrm{P_{3\phi}\:=\:3P_{1\phi}\:=\:\frac{3VE_{f}}{X_{d}}\sin\delta\:+\:\frac{3V^{2}}{2}\left(\frac{1}{X_{q}} \:-\: \frac{1}{X_{d}}\right)\:\sin 2\delta \:\:\:\:\dotso\: (10)}$$
The first term on right-hand side of Eqn.(10) is called the excitation power and the second term is called the reluctance power. Also, the reactive power per phase in VARs is,
$$\mathrm{Q_{1\phi} \:=\:\frac{VE_{f}}{X_{d}}\:\cos\delta\:-\:\frac{V^{2}}{2X_{d}\:X_{q}} \:[(X_{d} \:+\: X_{q}) \:-\: (X_{d} \:-\:X_{q})\:\cos 2\delta] \:\:\:\:\dotso\: (11)}$$
Hence, the total reactive power for three phases in VARs is,
$$\mathrm{Q_{3\phi}\:=\:3Q_{1\phi}\:=\:\frac{3VE_{f}}{X_{d}}\:\cos\delta \:-\: \frac{3V^{2}}{2X_{d} \:X_{q}} \:[(X_{d} \:+\: X_{q})\:-\: (X_{d}\:-\: X_{q})\:\cos 2\delta] \:\:\:\:\dotso\: (12)}$$
Equations (10)&(12) indicate the real power and reactive power of the salient pole synchronous motor. The torque angle (δ) is negative for the salient pole synchronous motor.
Numerical Example
A 30 MVA, 3-phase, star-connected, 11 kV, 8-pole, 50 Hz salient-pole synchronous motor has reactance of Xd= 8,Xq = 4. The torque angle is 27.5°. At full load, unity power factor and rated voltage determine the real power of the motor.
Solution
Armature current,
$$\mathrm{I_{a} \:=\: \frac{S_{3\phi}}{\sqrt{3}V} \:=\:\frac{30 \: \times \: 10^{6}}{\sqrt{3} \: \times \: 11 \: \times \: 10^{3}} \:=\: 1574.64\:A}$$
$$\mathrm{I_{d} \:=\: I_{a}\:\cos\delta \:=\:1574.64\: \times \: \cos 27.5° \:=\: 1396.72 \:A}$$
Hence, the excitation voltage per phase of the motor is,
$$\mathrm{E_{f} \:=\: V\:\cos 2\delta \:+\: I_{d}X_{d}}$$
$$\mathrm{\Rightarrow \: E_{f} \:=\: \frac{11000}{\sqrt{3}}\:\cos 27.5° \:+\:(1396.72\:\times\:8)\:=\:16807.2\:V}$$
The real power for three phases is,
$$\mathrm{P_{3\phi}\:=\:3P_{1\phi}\:=\:\frac{3VE_{f}}{X_{d}}\:\sin\delta \:+\: \frac{3V^{2}}{2} \left(\frac{1}{X_{q}} \:-\: \frac{1}{X_{d}}\right)\:\sin 2\delta}$$
$$\mathrm{\Rightarrow \: P_{3\phi} \:=\: \left[\frac{3\:\times\:11000\:\times\:16807.2}{\sqrt{3}\:\times\:8}\:\sin 27.5°\right] \:+\:\left[\left(\frac{3}{2}\right)\:\times\:\left(\frac{11000}{\sqrt{3}}\right)^{2}\:\times\: \left(\frac{1}{4} \:-\: \frac{1}{8}\right)\:\sin(2\:\times\:27.5)\right]}$$
$$\mathrm{\Rightarrow\:P_{3\phi}\:=\:18483194.48\:+\:6195200.78 \:=\: 24678395.26\:W}$$
$$\mathrm{P_{3\phi} \:=\: 24678.39 \:kW \:=\: 24.678\:MVA}$$