
- Scikit Image – Introduction
- Scikit Image - Image Processing
- Scikit Image - Numpy Images
- Scikit Image - Image datatypes
- Scikit Image - Using Plugins
- Scikit Image - Image Handlings
- Scikit Image - Reading Images
- Scikit Image - Writing Images
- Scikit Image - Displaying Images
- Scikit Image - Image Collections
- Scikit Image - Image Stack
- Scikit Image - Multi Image
- Scikit Image - Data Visualization
- Scikit Image - Using Matplotlib
- Scikit Image - Using Ploty
- Scikit Image - Using Mayavi
- Scikit Image - Using Napari
- Scikit Image - Color Manipulation
- Scikit Image - Alpha Channel
- Scikit Image - Conversion b/w Color & Gray Values
- Scikit Image - Conversion b/w RGB & HSV
- Scikit Image - Conversion to CIE-LAB Color Space
- Scikit Image - Conversion from CIE-LAB Color Space
- Scikit Image - Conversion to luv Color Space
- Scikit Image - Conversion from luv Color Space
- Scikit Image - Image Inversion
- Scikit Image - Painting Images with Labels
- Scikit Image - Contrast & Exposure
- Scikit Image - Contrast
- Scikit Image - Contrast enhancement
- Scikit Image - Exposure
- Scikit Image - Histogram Matching
- Scikit Image - Histogram Equalization
- Scikit Image - Local Histogram Equalization
- Scikit Image - Tinting gray-scale images
- Scikit Image - Image Transformation
- Scikit Image - Scaling an image
- Scikit Image - Rotating an Image
- Scikit Image - Warping an Image
- Scikit Image - Affine Transform
- Scikit Image - Piecewise Affine Transform
- Scikit Image - ProjectiveTransform
- Scikit Image - EuclideanTransform
- Scikit Image - Radon Transform
- Scikit Image - Line Hough Transform
- Scikit Image - Probabilistic Hough Transform
- Scikit Image - Circular Hough Transforms
- Scikit Image - Elliptical Hough Transforms
- Scikit Image - Polynomial Transform
- Scikit Image - Image Pyramids
- Scikit Image - Pyramid Gaussian Transform
- Scikit Image - Pyramid Laplacian Transform
- Scikit Image - Swirl Transform
- Scikit Image - Morphological Operations
- Scikit Image - Erosion
- Scikit Image - Dilation
- Scikit Image - Black & White Tophat Morphologies
- Scikit Image - Convex Hull
- Scikit Image - Generating footprints
- Scikit Image - Isotopic Dilation & Erosion
- Scikit Image - Isotopic Closing & Opening of an Image
- Scikit Image - Skelitonizing an Image
- Scikit Image - Morphological Thinning
- Scikit Image - Masking an image
- Scikit Image - Area Closing & Opening of an Image
- Scikit Image - Diameter Closing & Opening of an Image
- Scikit Image - Morphological reconstruction of an Image
- Scikit Image - Finding local Maxima
- Scikit Image - Finding local Minima
- Scikit Image - Removing Small Holes from an Image
- Scikit Image - Removing Small Objects from an Image
- Scikit Image - Filters
- Scikit Image - Image Filters
- Scikit Image - Median Filter
- Scikit Image - Mean Filters
- Scikit Image - Morphological gray-level Filters
- Scikit Image - Gabor Filter
- Scikit Image - Gaussian Filter
- Scikit Image - Butterworth Filter
- Scikit Image - Frangi Filter
- Scikit Image - Hessian Filter
- Scikit Image - Meijering Neuriteness Filter
- Scikit Image - Sato Filter
- Scikit Image - Sobel Filter
- Scikit Image - Farid Filter
- Scikit Image - Scharr Filter
- Scikit Image - Unsharp Mask Filter
- Scikit Image - Roberts Cross Operator
- Scikit Image - Lapalace Operator
- Scikit Image - Window Functions With Images
- Scikit Image - Thresholding
- Scikit Image - Applying Threshold
- Scikit Image - Otsu Thresholding
- Scikit Image - Local thresholding
- Scikit Image - Hysteresis Thresholding
- Scikit Image - Li thresholding
- Scikit Image - Multi-Otsu Thresholding
- Scikit Image - Niblack and Sauvola Thresholding
- Scikit Image - Restoring Images
- Scikit Image - Rolling-ball Algorithm
- Scikit Image - Denoising an Image
- Scikit Image - Wavelet Denoising
- Scikit Image - Non-local means denoising for preserving textures
- Scikit Image - Calibrating Denoisers Using J-Invariance
- Scikit Image - Total Variation Denoising
- Scikit Image - Shift-invariant wavelet denoising
- Scikit Image - Image Deconvolution
- Scikit Image - Richardson-Lucy Deconvolution
- Scikit Image - Recover the original from a wrapped phase image
- Scikit Image - Image Inpainting
- Scikit Image - Registering Images
- Scikit Image - Image Registration
- Scikit Image - Masked Normalized Cross-Correlation
- Scikit Image - Registration using optical flow
- Scikit Image - Assemble images with simple image stitching
- Scikit Image - Registration using Polar and Log-Polar
- Scikit Image - Feature Detection
- Scikit Image - Dense DAISY Feature Description
- Scikit Image - Histogram of Oriented Gradients
- Scikit Image - Template Matching
- Scikit Image - CENSURE Feature Detector
- Scikit Image - BRIEF Binary Descriptor
- Scikit Image - SIFT Feature Detector and Descriptor Extractor
- Scikit Image - GLCM Texture Features
- Scikit Image - Shape Index
- Scikit Image - Sliding Window Histogram
- Scikit Image - Finding Contour
- Scikit Image - Texture Classification Using Local Binary Pattern
- Scikit Image - Texture Classification Using Multi-Block Local Binary Pattern
- Scikit Image - Active Contour Model
- Scikit Image - Canny Edge Detection
- Scikit Image - Marching Cubes
- Scikit Image - Foerstner Corner Detection
- Scikit Image - Harris Corner Detection
- Scikit Image - Extracting FAST Corners
- Scikit Image - Shi-Tomasi Corner Detection
- Scikit Image - Haar Like Feature Detection
- Scikit Image - Haar Feature detection of coordinates
- Scikit Image - Hessian matrix
- Scikit Image - ORB feature Detection
- Scikit Image - Additional Concepts
- Scikit Image - Render text onto an image
- Scikit Image - Face detection using a cascade classifier
- Scikit Image - Face classification using Haar-like feature descriptor
- Scikit Image - Visual image comparison
- Scikit Image - Exploring Region Properties With Pandas
Calibrating Denoisers Using J-Invariance
Calibrating denoisers using J-Invariance is a method for improving the performance of denoising algorithms, specifically for image denoising. The key concept behind this approach is the notion of J-invariance, which ensures that the denoising process is independent of the specific pixel values in the original noisy image.
The scikit image library provides a dedicated function called calibrate_denoiser() within its restoration modulte to calibrate denoisers using the J-Invariance.
Using the skimage.restoration.calibrate_denoiser() function
The restoration.calibrate_denoiser() function is used to calibrate a denoising function and return the optimal J-invariant version. The returned function is partially evaluated with optimal parameter values set for denoising the input image.
Syntax
Following is the syntax of this function −
skimage.restoration.calibrate_denoiser(image, denoise_function, denoise_parameters, *, stride=4, approximate_loss=True, extra_output=False)
Parameters
Here are the details of its parameters −
image (ndarray): Input data to be denoised. It is typically recommended to convert the input image using img_as_float before denoising.
denoise_function (function): The denoising function that to be calibrated.
denoise_parameters (dict of lists): Ranges of parameters for the denoise_function to be calibrated over.
stride (int, optional): The stride used in the masking procedure that converts denoise_function to J-invariance. The default value is 4.
approximate_loss (bool, optional): A boolean indicating whether to approximate the self-supervised loss used to evaluate the denoiser. If True, the loss is computed on one masked version of the image, which can significantly reduce runtime. If False, the runtime will be longer by a factor of stride**image.ndim but may result in more accurate evaluation.
extra_output (bool, optional): If True, the function will return additional information, including parameters and losses. The default value is False.
The output of the function is −
best_denoise_function (function): which indicates the optimal J-invariant version of the denoise_function calibrated with the best parameters.
If extra_output is True, the following tuple is also returned −
(parameters_tested, losses) tuple (list of dict, list of int)
parameters_tested: A list of dictionaries representing the parameters tested for denoise_function.
losses: A list of self-supervised loss values for each set of parameters in parameters_tested.
Example
This example demonstrates the process of calibrating a wavelet denoising function with specific parameters and applying it to denoise a noisy image.
import numpy as np import matplotlib.pyplot as plt from skimage import color, io from skimage.restoration import denoise_wavelet, calibrate_denoiser # Load an input image img = color.rgb2gray(io.imread('Images/Car_2.jpg')) # Create a random number generator rng = np.random.default_rng() # Add Gaussian noise to the image noisy = img + 0.5 * img.std() * rng.standard_normal(img.shape) # Define denoising parameters for calibration parameters = {'sigma': np.arange(0.1, 0.4, 0.02)} # Calibrate the denoising function using noisy image and denoising parameters denoising_function = calibrate_denoiser(noisy, denoise_wavelet, denoise_parameters=parameters) # Apply the calibrated denoising function to the original image denoised_img = denoising_function(img) # Visualize the original, noisy, and denoised images fig, axes = plt.subplots(1, 3, figsize=(12, 4)) # Original Image axes[0].imshow(img, cmap='gray') axes[0].set_title('Original Image') axes[0].axis('off') # Noisy Image axes[1].imshow(noisy, cmap='gray') axes[1].set_title('Noisy Image') axes[1].axis('off') # Denoised Image axes[2].imshow(denoised_img, cmap='gray') axes[2].set_title('Denoised Image (Calibrated)') axes[2].axis('off') plt.tight_layout() plt.show()
Output

Example
The following example demonstrates the calibration of a denoising algorithm (specifically, the Total Variation(TV) Chambolle denoising algorithm) and compares the denoised results with and without calibration.
import numpy as np import matplotlib.pyplot as plt from skimage import io from skimage.restoration import calibrate_denoiser, denoise_tv_chambolle from skimage.util import img_as_float, random_noise from functools import partial # Load the input image image = img_as_float(io.imread('Images/Tajmahal.jpg')) # Add noise to the image sigma = 0.4 noisy = random_noise(image, mode='speckle', var=sigma ** 2) # Parameters to test when calibrating the denoising algorithm parameter_ranges_tv = {'weight': np.arange(0.001, 0.02, 0.5), 'max_num_iter':[100, 300]} # Calibrate denoiser calibrated_denoiser = calibrate_denoiser(noisy, denoise_tv_chambolle, denoise_parameters=parameter_ranges_tv) # Denoised image using default parameters of `denoise_tv_chambolle` default_output = denoise_tv_chambolle(noisy) # Denoised image using calibrated denoiser calibrated_output = calibrated_denoiser(noisy) fig, axes = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(10, 8)) axes = axes.ravel() # Original Image axes[0].imshow(image) axes[0].set_title('Original Image') axes[0].axis('off') # Noisy Image axes[1].imshow(noisy) axes[1].set_title('Noisy Image') axes[1].axis('off') # Denoised (Default) Image axes[2].imshow(default_output) axes[2].set_title('Denoised (Default)') axes[2].axis('off') # Denoised (Calibrated) Image axes[3].imshow(calibrated_output) axes[3].set_title('Denoised Image (Calibrated)') axes[3].axis('off') plt.tight_layout() plt.show()
Output
