
- Scikit Image – Introduction
- Scikit Image - Image Processing
- Scikit Image - Numpy Images
- Scikit Image - Image datatypes
- Scikit Image - Using Plugins
- Scikit Image - Image Handlings
- Scikit Image - Reading Images
- Scikit Image - Writing Images
- Scikit Image - Displaying Images
- Scikit Image - Image Collections
- Scikit Image - Image Stack
- Scikit Image - Multi Image
- Scikit Image - Data Visualization
- Scikit Image - Using Matplotlib
- Scikit Image - Using Ploty
- Scikit Image - Using Mayavi
- Scikit Image - Using Napari
- Scikit Image - Color Manipulation
- Scikit Image - Alpha Channel
- Scikit Image - Conversion b/w Color & Gray Values
- Scikit Image - Conversion b/w RGB & HSV
- Scikit Image - Conversion to CIE-LAB Color Space
- Scikit Image - Conversion from CIE-LAB Color Space
- Scikit Image - Conversion to luv Color Space
- Scikit Image - Conversion from luv Color Space
- Scikit Image - Image Inversion
- Scikit Image - Painting Images with Labels
- Scikit Image - Contrast & Exposure
- Scikit Image - Contrast
- Scikit Image - Contrast enhancement
- Scikit Image - Exposure
- Scikit Image - Histogram Matching
- Scikit Image - Histogram Equalization
- Scikit Image - Local Histogram Equalization
- Scikit Image - Tinting gray-scale images
- Scikit Image - Image Transformation
- Scikit Image - Scaling an image
- Scikit Image - Rotating an Image
- Scikit Image - Warping an Image
- Scikit Image - Affine Transform
- Scikit Image - Piecewise Affine Transform
- Scikit Image - ProjectiveTransform
- Scikit Image - EuclideanTransform
- Scikit Image - Radon Transform
- Scikit Image - Line Hough Transform
- Scikit Image - Probabilistic Hough Transform
- Scikit Image - Circular Hough Transforms
- Scikit Image - Elliptical Hough Transforms
- Scikit Image - Polynomial Transform
- Scikit Image - Image Pyramids
- Scikit Image - Pyramid Gaussian Transform
- Scikit Image - Pyramid Laplacian Transform
- Scikit Image - Swirl Transform
- Scikit Image - Morphological Operations
- Scikit Image - Erosion
- Scikit Image - Dilation
- Scikit Image - Black & White Tophat Morphologies
- Scikit Image - Convex Hull
- Scikit Image - Generating footprints
- Scikit Image - Isotopic Dilation & Erosion
- Scikit Image - Isotopic Closing & Opening of an Image
- Scikit Image - Skelitonizing an Image
- Scikit Image - Morphological Thinning
- Scikit Image - Masking an image
- Scikit Image - Area Closing & Opening of an Image
- Scikit Image - Diameter Closing & Opening of an Image
- Scikit Image - Morphological reconstruction of an Image
- Scikit Image - Finding local Maxima
- Scikit Image - Finding local Minima
- Scikit Image - Removing Small Holes from an Image
- Scikit Image - Removing Small Objects from an Image
- Scikit Image - Filters
- Scikit Image - Image Filters
- Scikit Image - Median Filter
- Scikit Image - Mean Filters
- Scikit Image - Morphological gray-level Filters
- Scikit Image - Gabor Filter
- Scikit Image - Gaussian Filter
- Scikit Image - Butterworth Filter
- Scikit Image - Frangi Filter
- Scikit Image - Hessian Filter
- Scikit Image - Meijering Neuriteness Filter
- Scikit Image - Sato Filter
- Scikit Image - Sobel Filter
- Scikit Image - Farid Filter
- Scikit Image - Scharr Filter
- Scikit Image - Unsharp Mask Filter
- Scikit Image - Roberts Cross Operator
- Scikit Image - Lapalace Operator
- Scikit Image - Window Functions With Images
- Scikit Image - Thresholding
- Scikit Image - Applying Threshold
- Scikit Image - Otsu Thresholding
- Scikit Image - Local thresholding
- Scikit Image - Hysteresis Thresholding
- Scikit Image - Li thresholding
- Scikit Image - Multi-Otsu Thresholding
- Scikit Image - Niblack and Sauvola Thresholding
- Scikit Image - Restoring Images
- Scikit Image - Rolling-ball Algorithm
- Scikit Image - Denoising an Image
- Scikit Image - Wavelet Denoising
- Scikit Image - Non-local means denoising for preserving textures
- Scikit Image - Calibrating Denoisers Using J-Invariance
- Scikit Image - Total Variation Denoising
- Scikit Image - Shift-invariant wavelet denoising
- Scikit Image - Image Deconvolution
- Scikit Image - Richardson-Lucy Deconvolution
- Scikit Image - Recover the original from a wrapped phase image
- Scikit Image - Image Inpainting
- Scikit Image - Registering Images
- Scikit Image - Image Registration
- Scikit Image - Masked Normalized Cross-Correlation
- Scikit Image - Registration using optical flow
- Scikit Image - Assemble images with simple image stitching
- Scikit Image - Registration using Polar and Log-Polar
- Scikit Image - Feature Detection
- Scikit Image - Dense DAISY Feature Description
- Scikit Image - Histogram of Oriented Gradients
- Scikit Image - Template Matching
- Scikit Image - CENSURE Feature Detector
- Scikit Image - BRIEF Binary Descriptor
- Scikit Image - SIFT Feature Detector and Descriptor Extractor
- Scikit Image - GLCM Texture Features
- Scikit Image - Shape Index
- Scikit Image - Sliding Window Histogram
- Scikit Image - Finding Contour
- Scikit Image - Texture Classification Using Local Binary Pattern
- Scikit Image - Texture Classification Using Multi-Block Local Binary Pattern
- Scikit Image - Active Contour Model
- Scikit Image - Canny Edge Detection
- Scikit Image - Marching Cubes
- Scikit Image - Foerstner Corner Detection
- Scikit Image - Harris Corner Detection
- Scikit Image - Extracting FAST Corners
- Scikit Image - Shi-Tomasi Corner Detection
- Scikit Image - Haar Like Feature Detection
- Scikit Image - Haar Feature detection of coordinates
- Scikit Image - Hessian matrix
- Scikit Image - ORB feature Detection
- Scikit Image - Additional Concepts
- Scikit Image - Render text onto an image
- Scikit Image - Face detection using a cascade classifier
- Scikit Image - Face classification using Haar-like feature descriptor
- Scikit Image - Visual image comparison
- Scikit Image - Exploring Region Properties With Pandas
Scikit Image - Probabilistic Hough Transform
The Probabilistic Hough Transform is a technique used in image analysis and computer vision to detect shapes, patterns, or structures in an image. Unlike the traditional Hough Transform, which accumulates all possible configurations of a shape.
The Probabilistic Hough Transform adopts a more efficient approach by sampling a random subset of voting points. This method approximates the final outcome effectively and allows the extraction of lines during the voting process by tracing along connected components. This returns the start and end points of each line segment, which is a valuable output.
Pythons, scikit-image library provides a function probabilistic_hough_line() in the transform module to perform the Probabilistic Hough Transform on images.
Using the skimage.transform.probabilistic_hough_line() function
The transform.probabilistic_hough_line() function is used to perform a progressive probabilistic line Hough transform on an input image containing edges.
Syntax
Following is the syntax of this function −
skimage.transform.probabilistic_hough_line(image, threshold=10, line_length=50, line_gap=10, theta=None, rng=None)
Parameters
- image: The input image with nonzero values representing edges.
- threshold: An optional integer parameter that sets the threshold.
- line_length: An optional parameter that defines the minimum length of detected lines. Increasing this parameter extracts longer line segments.
- line_gap: An optional parameter that sets the maximum gap allowed between pixels to still form a line. Increasing this parameter can help merge broken or interrupted lines.
- theta: An optional parameter that specifies the angles at which to compute the Hough transform. It is a 1D NumPy array of double values representing angles in radians. By default, it generates a vector of 180 angles evenly spaced in the range from -pi/2 to pi/2.
- rng: An optional parameter that allows you to specify a pseudo-random number generator (RNG) for probabilistic aspects of the algorithm. It can be a numpy.random.Generator instance or an integer seed. By default, a PCG64 generator is used.
Return Value
It returns a list of detected lines, where each line is represented as a tuple of two points: ((x0, y0), (x1, y1)), indicating the start and end points of the line in the image.
Example
The following example demonstrates how to use the probabilistic_hough_line() function to detect and highlight detected lines in an image.
import numpy as np import matplotlib.pyplot as plt from skimage.transform import probabilistic_hough_line from skimage.feature import canny from skimage import io, color # Load an input image image = io.imread('Images/Road.jpg', as_gray=True) # Apply Canny edge detection edges = canny(image) # Define the Angles for which to calculate the transform tested_angles = np.linspace(-np.pi / 2, np.pi / 2, 360, endpoint=False) # Apply probabilistic Hough line transform lines = probabilistic_hough_line(edges, threshold=5, line_length=10, line_gap=3, theta=tested_angles) # Display the results fig, axes = plt.subplots(1, 3, figsize=(15, 5), sharex=True, sharey=True) axes[0].imshow(image, cmap='gray') axes[0].set_title('Input image') axes[0].axis('off') axes[1].imshow(edges, cmap='gray') axes[1].set_title('Canny edges') axes[1].axis('off') axes[2].imshow(edges * 0) for line in lines: p0, p1 = line axes[2].plot((p0[0], p1[0]), (p0[1], p1[1])) axes[2].set_xlim((0, image.shape[1])) axes[2].set_ylim((image.shape[0], 0)) axes[2].set_title('Probabilistic Hough') axes[2].axis('off') plt.tight_layout() plt.show()
Output
On executing the above program, you will get the following output −

Example
The following example demonstrates how to use the probabilistic_hough_line() function to detect lines in an image by specifying the angles(theta) for which to calculate the transform.
import numpy as np import matplotlib.pyplot as plt from skimage.transform import probabilistic_hough_line from skimage.feature import canny from skimage import io # Load an input image image = io.imread('Images/Road.jpg', as_gray=True) # Apply Canny edge detection edges = canny(image) # Define the Angles for which to calculate the transform tested_angles = np.linspace(-np.pi / 2, np.pi / 2, 360, endpoint=False) # Apply probabilistic Hough line transform lines = probabilistic_hough_line(edges, threshold=5, line_length=10, line_gap=3, theta=tested_angles) # Display the results fig, axes = plt.subplots(1, 3, figsize=(15, 5), sharex=True, sharey=True) axes[0].imshow(image, cmap='gray') axes[0].set_title('Input image') axes[0].axis('off') axes[1].imshow(edges, cmap='gray') axes[1].set_title('Canny edges') axes[1].axis('off') axes[2].imshow(edges * 0) for line in lines: p0, p1 = line axes[2].plot((p0[0], p1[0]), (p0[1], p1[1])) axes[2].set_xlim((0, image.shape[1])) axes[2].set_ylim((image.shape[0], 0)) axes[2].set_title('Probabilistic Hough') axes[2].axis('off') plt.tight_layout() plt.show()
Output
On executing the above program, you will get the following output −
