
- Scikit Image – Introduction
- Scikit Image - Image Processing
- Scikit Image - Numpy Images
- Scikit Image - Image datatypes
- Scikit Image - Using Plugins
- Scikit Image - Image Handlings
- Scikit Image - Reading Images
- Scikit Image - Writing Images
- Scikit Image - Displaying Images
- Scikit Image - Image Collections
- Scikit Image - Image Stack
- Scikit Image - Multi Image
- Scikit Image - Data Visualization
- Scikit Image - Using Matplotlib
- Scikit Image - Using Ploty
- Scikit Image - Using Mayavi
- Scikit Image - Using Napari
- Scikit Image - Color Manipulation
- Scikit Image - Alpha Channel
- Scikit Image - Conversion b/w Color & Gray Values
- Scikit Image - Conversion b/w RGB & HSV
- Scikit Image - Conversion to CIE-LAB Color Space
- Scikit Image - Conversion from CIE-LAB Color Space
- Scikit Image - Conversion to luv Color Space
- Scikit Image - Conversion from luv Color Space
- Scikit Image - Image Inversion
- Scikit Image - Painting Images with Labels
- Scikit Image - Contrast & Exposure
- Scikit Image - Contrast
- Scikit Image - Contrast enhancement
- Scikit Image - Exposure
- Scikit Image - Histogram Matching
- Scikit Image - Histogram Equalization
- Scikit Image - Local Histogram Equalization
- Scikit Image - Tinting gray-scale images
- Scikit Image - Image Transformation
- Scikit Image - Scaling an image
- Scikit Image - Rotating an Image
- Scikit Image - Warping an Image
- Scikit Image - Affine Transform
- Scikit Image - Piecewise Affine Transform
- Scikit Image - ProjectiveTransform
- Scikit Image - EuclideanTransform
- Scikit Image - Radon Transform
- Scikit Image - Line Hough Transform
- Scikit Image - Probabilistic Hough Transform
- Scikit Image - Circular Hough Transforms
- Scikit Image - Elliptical Hough Transforms
- Scikit Image - Polynomial Transform
- Scikit Image - Image Pyramids
- Scikit Image - Pyramid Gaussian Transform
- Scikit Image - Pyramid Laplacian Transform
- Scikit Image - Swirl Transform
- Scikit Image - Morphological Operations
- Scikit Image - Erosion
- Scikit Image - Dilation
- Scikit Image - Black & White Tophat Morphologies
- Scikit Image - Convex Hull
- Scikit Image - Generating footprints
- Scikit Image - Isotopic Dilation & Erosion
- Scikit Image - Isotopic Closing & Opening of an Image
- Scikit Image - Skelitonizing an Image
- Scikit Image - Morphological Thinning
- Scikit Image - Masking an image
- Scikit Image - Area Closing & Opening of an Image
- Scikit Image - Diameter Closing & Opening of an Image
- Scikit Image - Morphological reconstruction of an Image
- Scikit Image - Finding local Maxima
- Scikit Image - Finding local Minima
- Scikit Image - Removing Small Holes from an Image
- Scikit Image - Removing Small Objects from an Image
- Scikit Image - Filters
- Scikit Image - Image Filters
- Scikit Image - Median Filter
- Scikit Image - Mean Filters
- Scikit Image - Morphological gray-level Filters
- Scikit Image - Gabor Filter
- Scikit Image - Gaussian Filter
- Scikit Image - Butterworth Filter
- Scikit Image - Frangi Filter
- Scikit Image - Hessian Filter
- Scikit Image - Meijering Neuriteness Filter
- Scikit Image - Sato Filter
- Scikit Image - Sobel Filter
- Scikit Image - Farid Filter
- Scikit Image - Scharr Filter
- Scikit Image - Unsharp Mask Filter
- Scikit Image - Roberts Cross Operator
- Scikit Image - Lapalace Operator
- Scikit Image - Window Functions With Images
- Scikit Image - Thresholding
- Scikit Image - Applying Threshold
- Scikit Image - Otsu Thresholding
- Scikit Image - Local thresholding
- Scikit Image - Hysteresis Thresholding
- Scikit Image - Li thresholding
- Scikit Image - Multi-Otsu Thresholding
- Scikit Image - Niblack and Sauvola Thresholding
- Scikit Image - Restoring Images
- Scikit Image - Rolling-ball Algorithm
- Scikit Image - Denoising an Image
- Scikit Image - Wavelet Denoising
- Scikit Image - Non-local means denoising for preserving textures
- Scikit Image - Calibrating Denoisers Using J-Invariance
- Scikit Image - Total Variation Denoising
- Scikit Image - Shift-invariant wavelet denoising
- Scikit Image - Image Deconvolution
- Scikit Image - Richardson-Lucy Deconvolution
- Scikit Image - Recover the original from a wrapped phase image
- Scikit Image - Image Inpainting
- Scikit Image - Registering Images
- Scikit Image - Image Registration
- Scikit Image - Masked Normalized Cross-Correlation
- Scikit Image - Registration using optical flow
- Scikit Image - Assemble images with simple image stitching
- Scikit Image - Registration using Polar and Log-Polar
- Scikit Image - Feature Detection
- Scikit Image - Dense DAISY Feature Description
- Scikit Image - Histogram of Oriented Gradients
- Scikit Image - Template Matching
- Scikit Image - CENSURE Feature Detector
- Scikit Image - BRIEF Binary Descriptor
- Scikit Image - SIFT Feature Detector and Descriptor Extractor
- Scikit Image - GLCM Texture Features
- Scikit Image - Shape Index
- Scikit Image - Sliding Window Histogram
- Scikit Image - Finding Contour
- Scikit Image - Texture Classification Using Local Binary Pattern
- Scikit Image - Texture Classification Using Multi-Block Local Binary Pattern
- Scikit Image - Active Contour Model
- Scikit Image - Canny Edge Detection
- Scikit Image - Marching Cubes
- Scikit Image - Foerstner Corner Detection
- Scikit Image - Harris Corner Detection
- Scikit Image - Extracting FAST Corners
- Scikit Image - Shi-Tomasi Corner Detection
- Scikit Image - Haar Like Feature Detection
- Scikit Image - Haar Feature detection of coordinates
- Scikit Image - Hessian matrix
- Scikit Image - ORB feature Detection
- Scikit Image - Additional Concepts
- Scikit Image - Render text onto an image
- Scikit Image - Face detection using a cascade classifier
- Scikit Image - Face classification using Haar-like feature descriptor
- Scikit Image - Visual image comparison
- Scikit Image - Exploring Region Properties With Pandas
Scikit Image - Piecewise Affine Transform
The PiecewiseAffineTransform is a type of geometric transformation, applied to an input image to move each pixel to a new position in the output image. It is a non-linear transformation technique that involves dividing an image into smaller regions (triangles) and applying individual affine transformations to each region. This is especially useful for tasks like image warping, morphing, and non-rigid image registration.
The Scikit-image library in Python provides a class called PiecewiseAffineTransform() in the transform module to perform this geometric transformation on images.
The PiecewiseAffineTransform class
In the scikit-image library, the class skimage.transform.PiecewiseAffineTransform is used to perform a piecewise affine transformation. The transformation is defined by a set of control points that are used to create a mesh of triangles using Delaunay triangulation. Each triangle is then used to compute a local affine transform, which allows for more flexible local geometric changes.
Syntax
Following is the syntax of this class −
class skimage.transform.PiecewiseAffineTransform
Here are the attributes of the class −
- affines: A list of AffineTransform objects. Each object represents an affine transformation for a triangle in the mesh.
- inverse_affines: A list of AffineTransform objects. Each object represents the inverse affine transformation for a triangle in the mesh.
Here is the attribute of the class −
- params: A (D+1, D+1) array representing the homogeneous transformation matrix.
Following are the methods of the class −
- estimate(src, dst): This method is used to estimate the piecewise affine transformation based on a set of corresponding source and destination coordinates (control points).
- __call__(self, coords): This method applies the forward transformation to a set of input coordinates and returns the transformed coordinates.
- inverse: This method returns a transformation object representing the inverse transformation.
The PiecewiseAffineTransform class is inherited from the _GeometricTransform (Abstract base class for geometric transformations).
Example
The following example demonstrates how to use the PiecewiseAffineTransform class to perform a piecewise affine transformation on an image using the set of control points.
import numpy as np import matplotlib.pyplot as plt from skimage.transform import PiecewiseAffineTransform, warp from skimage import io # Load the input image image = io.imread('Images/butterfly.jpg') # Define source and destination control points for transformation src = np.array([[10, 10], [300, 150], [150, 200]]) dst = np.array([[50, 30], [280, 70], [70, 180]]) # Create an instance of the PiecewiseAffineTransform class tform = PiecewiseAffineTransform() # Estimate the piecewise affine transformation based on control points tform.estimate(src, dst) # Apply the transformation using the warp function warped = warp(image, tform) # Display the original and transformed images fig, axes = plt.subplots(1, 2, figsize=(10, 5)) axes[0].imshow(image, cmap='gray') axes[0].set_title('Original Image') axes[0].axis('off') axes[1].imshow(warped, cmap='gray') axes[1].set_title('Transformed Image') axes[1].axis('off') plt.tight_layout() plt.show()
Output
On executing the above program, you will get the following output −

Example
The following example demonstrates how to use the PiecewiseAffineTransform class to perform a piecewise affine transformation on an image.
import numpy as np import matplotlib.pyplot as plt from skimage.transform import PiecewiseAffineTransform, warp from skimage import io # Load an input image image = io.imread('Images/butterfly.jpg') # Define the shape of the image rows, cols = image.shape[0], image.shape[1] # Create a grid of source control points src_cols = np.linspace(0, cols, 10) src_rows = np.linspace(0, rows, 7) src_rows, src_cols = np.meshgrid(src_rows, src_cols) src = np.dstack([src_cols.flat, src_rows.flat])[0] # Add sinusoidal oscillation to row coordinates of destination control points dst_rows = src[:, 1] - np.sin(np.linspace(0, 3 * np.pi, src.shape[0])) * 50 dst_cols = src[:, 0] dst_rows *= 1.5 dst_rows -= 1.5 * 50 dst = np.vstack([dst_cols, dst_rows]).T # Create a PiecewiseAffineTransform object and estimate the transformation tform = PiecewiseAffineTransform() tform.estimate(src, dst) # Compute the shape of the output image out_rows = image.shape[0] - 1.5 * 50 out_cols = cols # Perform the transformation out = warp(image, tform, output_shape=(out_rows, out_cols)) # Plot the original and transformed images fig, ax = plt.subplots(1, 2, figsize=(10, 5)) ax[0].imshow(image) ax[0].set_title('Original Image') ax[0].axis('off') ax[1].imshow(out) ax[1].set_title('Piecewise Affine Transformed Image') ax[1].axis('off') plt.show()
Output
On executing the above program, you will get the following output −
