
- Scikit Image – Introduction
- Scikit Image - Image Processing
- Scikit Image - Numpy Images
- Scikit Image - Image datatypes
- Scikit Image - Using Plugins
- Scikit Image - Image Handlings
- Scikit Image - Reading Images
- Scikit Image - Writing Images
- Scikit Image - Displaying Images
- Scikit Image - Image Collections
- Scikit Image - Image Stack
- Scikit Image - Multi Image
- Scikit Image - Data Visualization
- Scikit Image - Using Matplotlib
- Scikit Image - Using Ploty
- Scikit Image - Using Mayavi
- Scikit Image - Using Napari
- Scikit Image - Color Manipulation
- Scikit Image - Alpha Channel
- Scikit Image - Conversion b/w Color & Gray Values
- Scikit Image - Conversion b/w RGB & HSV
- Scikit Image - Conversion to CIE-LAB Color Space
- Scikit Image - Conversion from CIE-LAB Color Space
- Scikit Image - Conversion to luv Color Space
- Scikit Image - Conversion from luv Color Space
- Scikit Image - Image Inversion
- Scikit Image - Painting Images with Labels
- Scikit Image - Contrast & Exposure
- Scikit Image - Contrast
- Scikit Image - Contrast enhancement
- Scikit Image - Exposure
- Scikit Image - Histogram Matching
- Scikit Image - Histogram Equalization
- Scikit Image - Local Histogram Equalization
- Scikit Image - Tinting gray-scale images
- Scikit Image - Image Transformation
- Scikit Image - Scaling an image
- Scikit Image - Rotating an Image
- Scikit Image - Warping an Image
- Scikit Image - Affine Transform
- Scikit Image - Piecewise Affine Transform
- Scikit Image - ProjectiveTransform
- Scikit Image - EuclideanTransform
- Scikit Image - Radon Transform
- Scikit Image - Line Hough Transform
- Scikit Image - Probabilistic Hough Transform
- Scikit Image - Circular Hough Transforms
- Scikit Image - Elliptical Hough Transforms
- Scikit Image - Polynomial Transform
- Scikit Image - Image Pyramids
- Scikit Image - Pyramid Gaussian Transform
- Scikit Image - Pyramid Laplacian Transform
- Scikit Image - Swirl Transform
- Scikit Image - Morphological Operations
- Scikit Image - Erosion
- Scikit Image - Dilation
- Scikit Image - Black & White Tophat Morphologies
- Scikit Image - Convex Hull
- Scikit Image - Generating footprints
- Scikit Image - Isotopic Dilation & Erosion
- Scikit Image - Isotopic Closing & Opening of an Image
- Scikit Image - Skelitonizing an Image
- Scikit Image - Morphological Thinning
- Scikit Image - Masking an image
- Scikit Image - Area Closing & Opening of an Image
- Scikit Image - Diameter Closing & Opening of an Image
- Scikit Image - Morphological reconstruction of an Image
- Scikit Image - Finding local Maxima
- Scikit Image - Finding local Minima
- Scikit Image - Removing Small Holes from an Image
- Scikit Image - Removing Small Objects from an Image
- Scikit Image - Filters
- Scikit Image - Image Filters
- Scikit Image - Median Filter
- Scikit Image - Mean Filters
- Scikit Image - Morphological gray-level Filters
- Scikit Image - Gabor Filter
- Scikit Image - Gaussian Filter
- Scikit Image - Butterworth Filter
- Scikit Image - Frangi Filter
- Scikit Image - Hessian Filter
- Scikit Image - Meijering Neuriteness Filter
- Scikit Image - Sato Filter
- Scikit Image - Sobel Filter
- Scikit Image - Farid Filter
- Scikit Image - Scharr Filter
- Scikit Image - Unsharp Mask Filter
- Scikit Image - Roberts Cross Operator
- Scikit Image - Lapalace Operator
- Scikit Image - Window Functions With Images
- Scikit Image - Thresholding
- Scikit Image - Applying Threshold
- Scikit Image - Otsu Thresholding
- Scikit Image - Local thresholding
- Scikit Image - Hysteresis Thresholding
- Scikit Image - Li thresholding
- Scikit Image - Multi-Otsu Thresholding
- Scikit Image - Niblack and Sauvola Thresholding
- Scikit Image - Restoring Images
- Scikit Image - Rolling-ball Algorithm
- Scikit Image - Denoising an Image
- Scikit Image - Wavelet Denoising
- Scikit Image - Non-local means denoising for preserving textures
- Scikit Image - Calibrating Denoisers Using J-Invariance
- Scikit Image - Total Variation Denoising
- Scikit Image - Shift-invariant wavelet denoising
- Scikit Image - Image Deconvolution
- Scikit Image - Richardson-Lucy Deconvolution
- Scikit Image - Recover the original from a wrapped phase image
- Scikit Image - Image Inpainting
- Scikit Image - Registering Images
- Scikit Image - Image Registration
- Scikit Image - Masked Normalized Cross-Correlation
- Scikit Image - Registration using optical flow
- Scikit Image - Assemble images with simple image stitching
- Scikit Image - Registration using Polar and Log-Polar
- Scikit Image - Feature Detection
- Scikit Image - Dense DAISY Feature Description
- Scikit Image - Histogram of Oriented Gradients
- Scikit Image - Template Matching
- Scikit Image - CENSURE Feature Detector
- Scikit Image - BRIEF Binary Descriptor
- Scikit Image - SIFT Feature Detector and Descriptor Extractor
- Scikit Image - GLCM Texture Features
- Scikit Image - Shape Index
- Scikit Image - Sliding Window Histogram
- Scikit Image - Finding Contour
- Scikit Image - Texture Classification Using Local Binary Pattern
- Scikit Image - Texture Classification Using Multi-Block Local Binary Pattern
- Scikit Image - Active Contour Model
- Scikit Image - Canny Edge Detection
- Scikit Image - Marching Cubes
- Scikit Image - Foerstner Corner Detection
- Scikit Image - Harris Corner Detection
- Scikit Image - Extracting FAST Corners
- Scikit Image - Shi-Tomasi Corner Detection
- Scikit Image - Haar Like Feature Detection
- Scikit Image - Haar Feature detection of coordinates
- Scikit Image - Hessian matrix
- Scikit Image - ORB feature Detection
- Scikit Image - Additional Concepts
- Scikit Image - Render text onto an image
- Scikit Image - Face detection using a cascade classifier
- Scikit Image - Face classification using Haar-like feature descriptor
- Scikit Image - Visual image comparison
- Scikit Image - Exploring Region Properties With Pandas
Scikit Image − Image Filters
In the context of image processing, Image filters are techniques or mathematical operations applied to an image to modify, enhance, or extract specific information from it. Filters play a crucial role in manipulating and improving the visual characteristics of images.
Image filters are operate on a pixel-by-pixel basis, applying mathematical operations to pixels within a defined neighborhood. This neighborhood is often determined by structuring elements or footprints. These filters are used for a wide range of tasks, including smoothing, sharpening, and enhancing specific image features, and they can be implemented through techniques like convolution and frequency domain manipulation.
The Scikit Image library provides mainly two modules to work with image filters, including filters module and filters.rank module.
Basic filters in Scikit Image
Within Scikit Image, the "filters" submodule offers a variety of functions for applying filters to images. Specifically, the basic filters such as Minimum, Maximum, Median, and others are available within the filters.rank submodule.
- Minimum Filter: Applied using skimage.filters.rank.minimum() function, this filter returns the local minimum of an image.
- Maximu Filter: This filter can be applied using the skimage.filters.rank.maximum() function, and it returns the local maximum of the input image.
- Median Filter: It can be employed via skimage.filters.rank.median() function, this filter calculates the local median of an image.
- Mean Filter: The skimage.filters.rank.mean() function can be used to calculate the local mean filter of an image.
Example
Here is an example demonstrating how to apply basic filters such as "minimum", "maximum", "median", and "mean" filters to an input image −
import numpy as np import matplotlib.pyplot as plt from skimage.filters.rank import minimum, maximum, mean, median from skimage import io # Load the input image input_image = io.imread('Images/Blue.jpg', as_gray=True) # Define the structuring element (kernel) footprint = np.ones((5, 5)) # Apply minimum filter output_min = minimum(input_image, footprint=footprint) # Apply maximum filter output_max = maximum(input_image, footprint=footprint) # Apply median filter output_med = median(input_image, footprint=footprint) # Apply mean filter output_mean = mean(input_image, footprint=footprint) # Visualize the input and filtered images fig, axes = plt.subplots(1, 5, figsize=(10, 5)) axes[0].imshow(input_image, cmap='gray') axes[0].set_title("Input Image") axes[0].axis('off') axes[1].set_title("Minimum Filter") axes[1].imshow(output_min, cmap='gray') axes[1].axis('off') axes[2].imshow(output_max, cmap='gray') axes[2].set_title("Maximum Filter") axes[2].axis('off') axes[3].imshow(output_med, cmap='gray') axes[3].set_title("Median Filter") axes[3].axis('off') axes[4].imshow(output_mean, cmap='gray') axes[4].set_title("Mean Filter") axes[4].axis('off') plt.tight_layout() plt.show()
Output
Convolutional filters
In image filtering convolution is a neighborhood operation, where each output pixel is a weighted sum of neighboring input pixels using a convolution kernel. A very commonly used convolutional filter is the Gaussian filter.
Gaussian filter
The Gaussian filter is a classic image filter that is similar to the mean filter but assigns varying weights to neighborhood values. Pixels closer to the center are weighted more heavily than those farther away. The Gaussian filter's standard deviation, denoted as sigma, determines the size of the neighborhood.
This filter is generally used for blurring images while preserving their essential features. To apply the Gaussian filter, skimage.filters.gaussian() is used.
Example
Here's a simple example of how to apply a Gaussian filter using the filters.gaussian() function −
import numpy as np import matplotlib.pyplot as plt from skimage import io, filters # Load the input image image = io.imread('Images/Blue.jpg', as_gray=True) # Apply the Gaussian filter with a specified sigma sigma = 2 image_gaussian = filters.gaussian(image, sigma) # Display the original and filtered images fig, axes = plt.subplots(1, 2, figsize=(10, 10)) ax1, ax2 = axes.ravel() ax1.imshow(image, cmap='gray') ax1.set_title('Original Image') ax1.axis('off') ax2.imshow(image_gaussian, cmap='gray') ax2.set_title('Gaussian Filtered Image (sigma={})'.format(sigma)) ax2.axis('off') plt.tight_layout() plt.show()