
- Scikit Image – Introduction
- Scikit Image - Image Processing
- Scikit Image - Numpy Images
- Scikit Image - Image datatypes
- Scikit Image - Using Plugins
- Scikit Image - Image Handlings
- Scikit Image - Reading Images
- Scikit Image - Writing Images
- Scikit Image - Displaying Images
- Scikit Image - Image Collections
- Scikit Image - Image Stack
- Scikit Image - Multi Image
- Scikit Image - Data Visualization
- Scikit Image - Using Matplotlib
- Scikit Image - Using Ploty
- Scikit Image - Using Mayavi
- Scikit Image - Using Napari
- Scikit Image - Color Manipulation
- Scikit Image - Alpha Channel
- Scikit Image - Conversion b/w Color & Gray Values
- Scikit Image - Conversion b/w RGB & HSV
- Scikit Image - Conversion to CIE-LAB Color Space
- Scikit Image - Conversion from CIE-LAB Color Space
- Scikit Image - Conversion to luv Color Space
- Scikit Image - Conversion from luv Color Space
- Scikit Image - Image Inversion
- Scikit Image - Painting Images with Labels
- Scikit Image - Contrast & Exposure
- Scikit Image - Contrast
- Scikit Image - Contrast enhancement
- Scikit Image - Exposure
- Scikit Image - Histogram Matching
- Scikit Image - Histogram Equalization
- Scikit Image - Local Histogram Equalization
- Scikit Image - Tinting gray-scale images
- Scikit Image - Image Transformation
- Scikit Image - Scaling an image
- Scikit Image - Rotating an Image
- Scikit Image - Warping an Image
- Scikit Image - Affine Transform
- Scikit Image - Piecewise Affine Transform
- Scikit Image - ProjectiveTransform
- Scikit Image - EuclideanTransform
- Scikit Image - Radon Transform
- Scikit Image - Line Hough Transform
- Scikit Image - Probabilistic Hough Transform
- Scikit Image - Circular Hough Transforms
- Scikit Image - Elliptical Hough Transforms
- Scikit Image - Polynomial Transform
- Scikit Image - Image Pyramids
- Scikit Image - Pyramid Gaussian Transform
- Scikit Image - Pyramid Laplacian Transform
- Scikit Image - Swirl Transform
- Scikit Image - Morphological Operations
- Scikit Image - Erosion
- Scikit Image - Dilation
- Scikit Image - Black & White Tophat Morphologies
- Scikit Image - Convex Hull
- Scikit Image - Generating footprints
- Scikit Image - Isotopic Dilation & Erosion
- Scikit Image - Isotopic Closing & Opening of an Image
- Scikit Image - Skelitonizing an Image
- Scikit Image - Morphological Thinning
- Scikit Image - Masking an image
- Scikit Image - Area Closing & Opening of an Image
- Scikit Image - Diameter Closing & Opening of an Image
- Scikit Image - Morphological reconstruction of an Image
- Scikit Image - Finding local Maxima
- Scikit Image - Finding local Minima
- Scikit Image - Removing Small Holes from an Image
- Scikit Image - Removing Small Objects from an Image
- Scikit Image - Filters
- Scikit Image - Image Filters
- Scikit Image - Median Filter
- Scikit Image - Mean Filters
- Scikit Image - Morphological gray-level Filters
- Scikit Image - Gabor Filter
- Scikit Image - Gaussian Filter
- Scikit Image - Butterworth Filter
- Scikit Image - Frangi Filter
- Scikit Image - Hessian Filter
- Scikit Image - Meijering Neuriteness Filter
- Scikit Image - Sato Filter
- Scikit Image - Sobel Filter
- Scikit Image - Farid Filter
- Scikit Image - Scharr Filter
- Scikit Image - Unsharp Mask Filter
- Scikit Image - Roberts Cross Operator
- Scikit Image - Lapalace Operator
- Scikit Image - Window Functions With Images
- Scikit Image - Thresholding
- Scikit Image - Applying Threshold
- Scikit Image - Otsu Thresholding
- Scikit Image - Local thresholding
- Scikit Image - Hysteresis Thresholding
- Scikit Image - Li thresholding
- Scikit Image - Multi-Otsu Thresholding
- Scikit Image - Niblack and Sauvola Thresholding
- Scikit Image - Restoring Images
- Scikit Image - Rolling-ball Algorithm
- Scikit Image - Denoising an Image
- Scikit Image - Wavelet Denoising
- Scikit Image - Non-local means denoising for preserving textures
- Scikit Image - Calibrating Denoisers Using J-Invariance
- Scikit Image - Total Variation Denoising
- Scikit Image - Shift-invariant wavelet denoising
- Scikit Image - Image Deconvolution
- Scikit Image - Richardson-Lucy Deconvolution
- Scikit Image - Recover the original from a wrapped phase image
- Scikit Image - Image Inpainting
- Scikit Image - Registering Images
- Scikit Image - Image Registration
- Scikit Image - Masked Normalized Cross-Correlation
- Scikit Image - Registration using optical flow
- Scikit Image - Assemble images with simple image stitching
- Scikit Image - Registration using Polar and Log-Polar
- Scikit Image - Feature Detection
- Scikit Image - Dense DAISY Feature Description
- Scikit Image - Histogram of Oriented Gradients
- Scikit Image - Template Matching
- Scikit Image - CENSURE Feature Detector
- Scikit Image - BRIEF Binary Descriptor
- Scikit Image - SIFT Feature Detector and Descriptor Extractor
- Scikit Image - GLCM Texture Features
- Scikit Image - Shape Index
- Scikit Image - Sliding Window Histogram
- Scikit Image - Finding Contour
- Scikit Image - Texture Classification Using Local Binary Pattern
- Scikit Image - Texture Classification Using Multi-Block Local Binary Pattern
- Scikit Image - Active Contour Model
- Scikit Image - Canny Edge Detection
- Scikit Image - Marching Cubes
- Scikit Image - Foerstner Corner Detection
- Scikit Image - Harris Corner Detection
- Scikit Image - Extracting FAST Corners
- Scikit Image - Shi-Tomasi Corner Detection
- Scikit Image - Haar Like Feature Detection
- Scikit Image - Haar Feature detection of coordinates
- Scikit Image - Hessian matrix
- Scikit Image - ORB feature Detection
- Scikit Image - Additional Concepts
- Scikit Image - Render text onto an image
- Scikit Image - Face detection using a cascade classifier
- Scikit Image - Face classification using Haar-like feature descriptor
- Scikit Image - Visual image comparison
- Scikit Image - Exploring Region Properties With Pandas
Scikit Image - Finding Contour
In image processing, a contour is a continuous curve that connects points with the same color or intensity along a boundary. Finding contours play a crucial role in shape analysis and object detection, aiding in the identification and characterization of objects within an image.
The Scikit-Image library offers a powerful tool for finding contours using the find_contours() function within its measure module to find the contours using the marching squares method.
Using the skimage.measure.find_contours() function
The measure.find_contours() function is used to find iso-valued contours in a 2D array for a given level value. It's a useful tool for tasks like identifying boundaries or shapes within an image.
It employs the 'marching squares' technique to calculate iso-valued contours within the input 2D array at a specified level value. To enhance precision in the resulting contours, the array values undergo linear interpolation.
Syntax
Following is the syntax of this function −
skimage.measure.find_contours(image, level=None, fully_connected='low', positive_orientation='low', *, mask=None)
Parameters
Here are the parameters and their explanations −
image (2D ndarray of double): This is the input image in which to find contours.
level (float, optional): This parameter specifies the value along which to find contours in the array. By default, the level is set to the midpoint between the maximum and minimum values in the image (i.e. (max(image) + min(image)) / 2).
fully_connected (str, {'low', 'high'}): This parameter determines whether array elements below the given level value are considered fully connected (and hence elements above the value will only be face connected), or vice versa.
positive_orientation (str, {'low', 'high'}): This parameter indicates whether the output contours will produce positively-oriented polygons around islands of low- or high-valued elements. The options are:
'low': Contours will wind counter-clockwise around elements below the iso-value.
'high': Contours will wind counter-clockwise around elements above the iso-value.
mask (2D ndarray of bool, or None): A boolean mask that indicates where you want to draw contours. If a mask is passed, contours will only be computed in regions where the mask is True. NaN values in the image are automatically excluded from the considered region (the mask is set to False wherever the array is NaN).
The function returns a list of (n,2)-ndarrays, where each contour is an ndarray of shape (n, 2), consisting of n (row, column) coordinates along the contour.
Example
Here is an example that uses the find_contours() function to detect contours within an array at a level of 0.5.
import numpy as np from skimage.measure import find_contours # Create a 3x3 NumPy array a = np.zeros((3, 3)) # Set one element to a value of 1 a[0, 0] = 1 # Display the input array print("Input Array:") print(a) # Find contours in the array at a level of 0.5 contours = find_contours(a, 0.5) # Display the contours found print("Contours:") for contour in contours: print(contour)
Output
Input Array: [[1. 0. 0.] [0. 0. 0.] [0. 0. 0.]] Contours: [[0. 0.5] [0.5 0. ]]
Example
The following example demonstrates the process of finding contours in an image using the skimage.measure.find_contours() function.
import numpy as np import matplotlib.pyplot as plt from skimage import measure # Create some test data x, y = np.ogrid[-np.pi:np.pi:100j, -np.pi:np.pi:100j] array = np.sin(np.exp(np.sin(x)**3 + np.cos(y)**2)) # Find contours in 'r' at a constant value of 0.8 contours = measure.find_contours(array, 0.8) # Create a figure and axes for displaying the image and contours fig, ax = plt.subplots(1,2, figsize=(10, 5)) # Display the grayscale image ax[0].imshow(array, cmap=plt.cm.gray) ax[0].set_title('Original Image') ax[0].axis('off') ax[1].imshow(array, cmap=plt.cm.gray) ax[1].set_title('Resultant contours') # Plot each contour found with a linewidth of 2 for contour in contours: ax[1].plot(contour[:, 1], contour[:, 0], linewidth=2) # Set axis properties for image display ax[1].axis('image') ax[1].set_xticks([]) ax[1].set_yticks([]) plt.tight_layout() plt.show()
Output
