
- Scikit Image – Introduction
- Scikit Image - Image Processing
- Scikit Image - Numpy Images
- Scikit Image - Image datatypes
- Scikit Image - Using Plugins
- Scikit Image - Image Handlings
- Scikit Image - Reading Images
- Scikit Image - Writing Images
- Scikit Image - Displaying Images
- Scikit Image - Image Collections
- Scikit Image - Image Stack
- Scikit Image - Multi Image
- Scikit Image - Data Visualization
- Scikit Image - Using Matplotlib
- Scikit Image - Using Ploty
- Scikit Image - Using Mayavi
- Scikit Image - Using Napari
- Scikit Image - Color Manipulation
- Scikit Image - Alpha Channel
- Scikit Image - Conversion b/w Color & Gray Values
- Scikit Image - Conversion b/w RGB & HSV
- Scikit Image - Conversion to CIE-LAB Color Space
- Scikit Image - Conversion from CIE-LAB Color Space
- Scikit Image - Conversion to luv Color Space
- Scikit Image - Conversion from luv Color Space
- Scikit Image - Image Inversion
- Scikit Image - Painting Images with Labels
- Scikit Image - Contrast & Exposure
- Scikit Image - Contrast
- Scikit Image - Contrast enhancement
- Scikit Image - Exposure
- Scikit Image - Histogram Matching
- Scikit Image - Histogram Equalization
- Scikit Image - Local Histogram Equalization
- Scikit Image - Tinting gray-scale images
- Scikit Image - Image Transformation
- Scikit Image - Scaling an image
- Scikit Image - Rotating an Image
- Scikit Image - Warping an Image
- Scikit Image - Affine Transform
- Scikit Image - Piecewise Affine Transform
- Scikit Image - ProjectiveTransform
- Scikit Image - EuclideanTransform
- Scikit Image - Radon Transform
- Scikit Image - Line Hough Transform
- Scikit Image - Probabilistic Hough Transform
- Scikit Image - Circular Hough Transforms
- Scikit Image - Elliptical Hough Transforms
- Scikit Image - Polynomial Transform
- Scikit Image - Image Pyramids
- Scikit Image - Pyramid Gaussian Transform
- Scikit Image - Pyramid Laplacian Transform
- Scikit Image - Swirl Transform
- Scikit Image - Morphological Operations
- Scikit Image - Erosion
- Scikit Image - Dilation
- Scikit Image - Black & White Tophat Morphologies
- Scikit Image - Convex Hull
- Scikit Image - Generating footprints
- Scikit Image - Isotopic Dilation & Erosion
- Scikit Image - Isotopic Closing & Opening of an Image
- Scikit Image - Skelitonizing an Image
- Scikit Image - Morphological Thinning
- Scikit Image - Masking an image
- Scikit Image - Area Closing & Opening of an Image
- Scikit Image - Diameter Closing & Opening of an Image
- Scikit Image - Morphological reconstruction of an Image
- Scikit Image - Finding local Maxima
- Scikit Image - Finding local Minima
- Scikit Image - Removing Small Holes from an Image
- Scikit Image - Removing Small Objects from an Image
- Scikit Image - Filters
- Scikit Image - Image Filters
- Scikit Image - Median Filter
- Scikit Image - Mean Filters
- Scikit Image - Morphological gray-level Filters
- Scikit Image - Gabor Filter
- Scikit Image - Gaussian Filter
- Scikit Image - Butterworth Filter
- Scikit Image - Frangi Filter
- Scikit Image - Hessian Filter
- Scikit Image - Meijering Neuriteness Filter
- Scikit Image - Sato Filter
- Scikit Image - Sobel Filter
- Scikit Image - Farid Filter
- Scikit Image - Scharr Filter
- Scikit Image - Unsharp Mask Filter
- Scikit Image - Roberts Cross Operator
- Scikit Image - Lapalace Operator
- Scikit Image - Window Functions With Images
- Scikit Image - Thresholding
- Scikit Image - Applying Threshold
- Scikit Image - Otsu Thresholding
- Scikit Image - Local thresholding
- Scikit Image - Hysteresis Thresholding
- Scikit Image - Li thresholding
- Scikit Image - Multi-Otsu Thresholding
- Scikit Image - Niblack and Sauvola Thresholding
- Scikit Image - Restoring Images
- Scikit Image - Rolling-ball Algorithm
- Scikit Image - Denoising an Image
- Scikit Image - Wavelet Denoising
- Scikit Image - Non-local means denoising for preserving textures
- Scikit Image - Calibrating Denoisers Using J-Invariance
- Scikit Image - Total Variation Denoising
- Scikit Image - Shift-invariant wavelet denoising
- Scikit Image - Image Deconvolution
- Scikit Image - Richardson-Lucy Deconvolution
- Scikit Image - Recover the original from a wrapped phase image
- Scikit Image - Image Inpainting
- Scikit Image - Registering Images
- Scikit Image - Image Registration
- Scikit Image - Masked Normalized Cross-Correlation
- Scikit Image - Registration using optical flow
- Scikit Image - Assemble images with simple image stitching
- Scikit Image - Registration using Polar and Log-Polar
- Scikit Image - Feature Detection
- Scikit Image - Dense DAISY Feature Description
- Scikit Image - Histogram of Oriented Gradients
- Scikit Image - Template Matching
- Scikit Image - CENSURE Feature Detector
- Scikit Image - BRIEF Binary Descriptor
- Scikit Image - SIFT Feature Detector and Descriptor Extractor
- Scikit Image - GLCM Texture Features
- Scikit Image - Shape Index
- Scikit Image - Sliding Window Histogram
- Scikit Image - Finding Contour
- Scikit Image - Texture Classification Using Local Binary Pattern
- Scikit Image - Texture Classification Using Multi-Block Local Binary Pattern
- Scikit Image - Active Contour Model
- Scikit Image - Canny Edge Detection
- Scikit Image - Marching Cubes
- Scikit Image - Foerstner Corner Detection
- Scikit Image - Harris Corner Detection
- Scikit Image - Extracting FAST Corners
- Scikit Image - Shi-Tomasi Corner Detection
- Scikit Image - Haar Like Feature Detection
- Scikit Image - Haar Feature detection of coordinates
- Scikit Image - Hessian matrix
- Scikit Image - ORB feature Detection
- Scikit Image - Additional Concepts
- Scikit Image - Render text onto an image
- Scikit Image - Face detection using a cascade classifier
- Scikit Image - Face classification using Haar-like feature descriptor
- Scikit Image - Visual image comparison
- Scikit Image - Exploring Region Properties With Pandas
Scikit Image − Sobel Filter
The Sobel filter is a popular and fundamental tool for edge detection in image processing. It calculates the gradient of an image to find regions of rapid intensity change, which are often indicative of edges and boundaries in the image.
The "scikit-image" (skimage) library offers three key functions within its filter module for applying the Sobel filter to images, which includes sobel(), sobel_h(), and sobel_v(). These functions are valuable tools for various image analysis tasks where the detection and enhancement of edges and boundaries are crucial.
Using the skimage.filters.sobel() function
The sobel() function is used to find edges in an image using the Sobel filter.
Following is the syntax of this function −
skimage.filters.sobel(image, mask=None, *, axis=None, mode='reflect', cval=0.0)
Parameters
- image: The input image on which sobel edge detection will be applied. It should be a NumPy ndarray representing the image.
- mask (optional): An array of boolean values that can be used to clip the output image. Wherever mask is set to 0, the corresponding values in the output image will be set to 0 as well.
- axis (optional): An integer or sequence of integers specifying the axis or axes along which to compute the edge filter. If not provided, the edge magnitude is computed. Which is defined as:
Here's an explanation of the parameters −
sobel_mag = np.sqrt(sum([sobel(image, axis=i)**2 for i in range(image.ndim)]) / image.ndim)
Return value
The function returns an array of float values, which represents the Sobel edge map.
Example
The following example applies the Sobel edge detection filter to an input image using the skimage.filters.sobel() function −
import matplotlib.pyplot as plt from skimage.filters import sobel from skimage import io # Load the input image image = io.imread('Images/tree.jpg', ) # Apply the Sobel filter filtered_image = sobel(image) # Plot the original and filtered images fig, axes = plt.subplots(1, 2, figsize=(10, 5)) ax = axes.ravel() # Display the Original Image ax[0].imshow(image, cmap='gray') ax[0].set_title('Original Image') ax[0].axis('off') # Display the Sobel Filter Result ax[1].imshow(filtered_image, cmap='gray') ax[1].axis('off') ax[1].set_title('Sobel Filter Result') plt.tight_layout() plt.show()
Output
Horizontal and Vertical edge detection using the sobel_h() and sobel_v() functions
The skimage.filters.sobel_h() and skimage.filters.sobel_v() functions are used to find horizontal and vertical edges in a 2-D image, respectively, by applying the Sobel transform. These functions calculate the gradients of the image in the horizontal and vertical directions. And these two functions returns a 2-D array representing the Sobel edge map, which highlights regions of rapid intensity change along the horizontal and vertical axis, typically corresponding to horizontal and vertical edges.
Syntax
Syntax for sobel_h() function −
skimage.filters.sobel_h(image, mask=None)
Syntax
Syntax for sobel_v() function −
skimage.filters.sobel_v(image, mask=None)
Here is the parameters explanation of both the functions −
- image (2-D array): The input image to process for horizontal and vertical edge detection.
- mask (optional, 2-D array): An optional mask to limit the application of the Sobel transform to a certain area. Surrounding pixels are also masked to prevent them from affecting the result.
Example
This example applies the Sobel horizontal and vertical edge detection filters (sobel_h() and sobel_v()) on an input image −
import matplotlib.pyplot as plt from skimage.filters import sobel_h, sobel_v from skimage import io, color # Load the input image image = io.imread('Images/Lines.jpg') # Convert the image to grayscale gray_image = color.rgb2gray(image) # Apply the Sobel horizontal filter filtered_image_h = sobel_h(gray_image) # Apply the Sobel vertical filter filtered_image_v = sobel_v(gray_image) # Plot the original, Sobel horizontal, and Sobel vertical filtered images fig, axes = plt.subplots(1, 3, figsize=(15, 5)) ax = axes.ravel() # Display the Original Image ax[0].imshow(gray_image, cmap='gray') ax[0].set_title('Original Image') ax[0].axis('off') # Display the Sobel Horizontal Filter Result ax[1].imshow(filtered_image_h, cmap='gray') ax[1].set_title('Sobel Horizontal Filter Result') ax[1].axis('off') # Display the Sobel Vertical Filter Result ax[2].imshow(filtered_image_v, cmap='gray') ax[2].set_title('Sobel Vertical Filter Result') ax[2].axis('off') plt.tight_layout() plt.show()