
- Scikit Image – Introduction
- Scikit Image - Image Processing
- Scikit Image - Numpy Images
- Scikit Image - Image datatypes
- Scikit Image - Using Plugins
- Scikit Image - Image Handlings
- Scikit Image - Reading Images
- Scikit Image - Writing Images
- Scikit Image - Displaying Images
- Scikit Image - Image Collections
- Scikit Image - Image Stack
- Scikit Image - Multi Image
- Scikit Image - Data Visualization
- Scikit Image - Using Matplotlib
- Scikit Image - Using Ploty
- Scikit Image - Using Mayavi
- Scikit Image - Using Napari
- Scikit Image - Color Manipulation
- Scikit Image - Alpha Channel
- Scikit Image - Conversion b/w Color & Gray Values
- Scikit Image - Conversion b/w RGB & HSV
- Scikit Image - Conversion to CIE-LAB Color Space
- Scikit Image - Conversion from CIE-LAB Color Space
- Scikit Image - Conversion to luv Color Space
- Scikit Image - Conversion from luv Color Space
- Scikit Image - Image Inversion
- Scikit Image - Painting Images with Labels
- Scikit Image - Contrast & Exposure
- Scikit Image - Contrast
- Scikit Image - Contrast enhancement
- Scikit Image - Exposure
- Scikit Image - Histogram Matching
- Scikit Image - Histogram Equalization
- Scikit Image - Local Histogram Equalization
- Scikit Image - Tinting gray-scale images
- Scikit Image - Image Transformation
- Scikit Image - Scaling an image
- Scikit Image - Rotating an Image
- Scikit Image - Warping an Image
- Scikit Image - Affine Transform
- Scikit Image - Piecewise Affine Transform
- Scikit Image - ProjectiveTransform
- Scikit Image - EuclideanTransform
- Scikit Image - Radon Transform
- Scikit Image - Line Hough Transform
- Scikit Image - Probabilistic Hough Transform
- Scikit Image - Circular Hough Transforms
- Scikit Image - Elliptical Hough Transforms
- Scikit Image - Polynomial Transform
- Scikit Image - Image Pyramids
- Scikit Image - Pyramid Gaussian Transform
- Scikit Image - Pyramid Laplacian Transform
- Scikit Image - Swirl Transform
- Scikit Image - Morphological Operations
- Scikit Image - Erosion
- Scikit Image - Dilation
- Scikit Image - Black & White Tophat Morphologies
- Scikit Image - Convex Hull
- Scikit Image - Generating footprints
- Scikit Image - Isotopic Dilation & Erosion
- Scikit Image - Isotopic Closing & Opening of an Image
- Scikit Image - Skelitonizing an Image
- Scikit Image - Morphological Thinning
- Scikit Image - Masking an image
- Scikit Image - Area Closing & Opening of an Image
- Scikit Image - Diameter Closing & Opening of an Image
- Scikit Image - Morphological reconstruction of an Image
- Scikit Image - Finding local Maxima
- Scikit Image - Finding local Minima
- Scikit Image - Removing Small Holes from an Image
- Scikit Image - Removing Small Objects from an Image
- Scikit Image - Filters
- Scikit Image - Image Filters
- Scikit Image - Median Filter
- Scikit Image - Mean Filters
- Scikit Image - Morphological gray-level Filters
- Scikit Image - Gabor Filter
- Scikit Image - Gaussian Filter
- Scikit Image - Butterworth Filter
- Scikit Image - Frangi Filter
- Scikit Image - Hessian Filter
- Scikit Image - Meijering Neuriteness Filter
- Scikit Image - Sato Filter
- Scikit Image - Sobel Filter
- Scikit Image - Farid Filter
- Scikit Image - Scharr Filter
- Scikit Image - Unsharp Mask Filter
- Scikit Image - Roberts Cross Operator
- Scikit Image - Lapalace Operator
- Scikit Image - Window Functions With Images
- Scikit Image - Thresholding
- Scikit Image - Applying Threshold
- Scikit Image - Otsu Thresholding
- Scikit Image - Local thresholding
- Scikit Image - Hysteresis Thresholding
- Scikit Image - Li thresholding
- Scikit Image - Multi-Otsu Thresholding
- Scikit Image - Niblack and Sauvola Thresholding
- Scikit Image - Restoring Images
- Scikit Image - Rolling-ball Algorithm
- Scikit Image - Denoising an Image
- Scikit Image - Wavelet Denoising
- Scikit Image - Non-local means denoising for preserving textures
- Scikit Image - Calibrating Denoisers Using J-Invariance
- Scikit Image - Total Variation Denoising
- Scikit Image - Shift-invariant wavelet denoising
- Scikit Image - Image Deconvolution
- Scikit Image - Richardson-Lucy Deconvolution
- Scikit Image - Recover the original from a wrapped phase image
- Scikit Image - Image Inpainting
- Scikit Image - Registering Images
- Scikit Image - Image Registration
- Scikit Image - Masked Normalized Cross-Correlation
- Scikit Image - Registration using optical flow
- Scikit Image - Assemble images with simple image stitching
- Scikit Image - Registration using Polar and Log-Polar
- Scikit Image - Feature Detection
- Scikit Image - Dense DAISY Feature Description
- Scikit Image - Histogram of Oriented Gradients
- Scikit Image - Template Matching
- Scikit Image - CENSURE Feature Detector
- Scikit Image - BRIEF Binary Descriptor
- Scikit Image - SIFT Feature Detector and Descriptor Extractor
- Scikit Image - GLCM Texture Features
- Scikit Image - Shape Index
- Scikit Image - Sliding Window Histogram
- Scikit Image - Finding Contour
- Scikit Image - Texture Classification Using Local Binary Pattern
- Scikit Image - Texture Classification Using Multi-Block Local Binary Pattern
- Scikit Image - Active Contour Model
- Scikit Image - Canny Edge Detection
- Scikit Image - Marching Cubes
- Scikit Image - Foerstner Corner Detection
- Scikit Image - Harris Corner Detection
- Scikit Image - Extracting FAST Corners
- Scikit Image - Shi-Tomasi Corner Detection
- Scikit Image - Haar Like Feature Detection
- Scikit Image - Haar Feature detection of coordinates
- Scikit Image - Hessian matrix
- Scikit Image - ORB feature Detection
- Scikit Image - Additional Concepts
- Scikit Image - Render text onto an image
- Scikit Image - Face detection using a cascade classifier
- Scikit Image - Face classification using Haar-like feature descriptor
- Scikit Image - Visual image comparison
- Scikit Image - Exploring Region Properties With Pandas
Scikit Image - Hessian Matrix
The Hessian matrix, in the context of mathematics and computer vision, is a square matrix that contains second-order partial derivatives of a function or image. This matrix provides valuable information about the local curvature, smoothness, and rate of change of a function or an image at each point.
This matrix is a fundamental tool in various image analysis techniques, including feature detection, corner detection, image segmentation, and texture analysis. By analyzing the eigenvalues and eigenvectors of the Hessian matrix, it's possible to determine the shape, orientation, and significance of features within an image
The scikit-image (skimage) library provides the hessian_matrix and hessian_matrix_eigvals functions for computing the Hessian matrix and its eigenvalues, respectively. And these functions are part of scikit-image's feature module.
Using the skimage.feature.hessian_matrix() function
The hessian_matrix() function is used to compute the Hessian matrix of an image.
which is computed by convolving the image with the second derivatives of the Gaussian kernel in the respective r (row) and c (column) directions. The Hessian matrix for 2D data is defined as −
H = [Hrr Hrc] [Hrc Hcc]
The implementation of this function also supports n-dimensional data.
Syntax
Here is the syntax of the function −
skimage.feature.hessian_matrix(image, sigma=1, mode='constant', cval=0, order='rc', use_gaussian_derivatives=None)
Parameters
Following are the details of the function parameters −
image (ndarray): This parameter is the input image to compute the Hessian matrix.
sigma (float): Sigma is the standard deviation of the Gaussian kernel used to compute the second derivatives. Which is used as a weighting function for the auto-correlation matrix.
mode {'constant', 'reflect', 'wrap', 'nearest', 'mirror'}, optional: This parameter, how to handle values outside the image borders.
cval (float, optional): When using the 'constant' mode, this parameter defines the constant value to be used for values outside the image boundaries.
order ({'rc', 'xy'}, optional): For 2D images, this parameter allows for the use of reverse or forward order of the image axes in gradient computation. 'rc' indicates the use of the first axis initially (Hrr, Hrc, Hcc), while 'xy' indicates the usage of the last axis initially (Hxx, Hxy, Hyy). Images with higher dimensions must always use 'rc' order.
use_gaussian_derivatives (boolean, optional): Indicates whether the Hessian is computed by convolving with Gaussian derivatives or by a simple finite-difference operation.
The function returns a list of ndarray (H_elems), representing the upper-diagonal elements of the Hessian matrix for each pixel in the input image. In 2D, this will be a three-element list containing [Hrr, Hrc, Hcc]. In nD, the list will contain (n**2 + n) / 2 arrays.
Example
This example demonstrates how to calculate the Hessian matrix for a simple image using the hessian_matrix() function.
from skimage.feature import hessian_matrix import numpy as np # Create a 5x5 NumPy array to represent a 2D image filled with zeros square = np.zeros((5, 5)) # Assign a value 4 to the central pixel of the 'square' image square[2, 2] = 4 # print the input array print("Input array:") print(square) # Compute the Hessian matrix components Hrr, Hrc, Hcc = hessian_matrix(square, sigma=0.1, order='rc', use_gaussian_derivatives=False) # Print the Hessian matrix components print("Hessian Matrix Elements:") print("Hrr:") print(Hrr) print("Hrc:") print(Hrc) print("Hcc:") print(Hcc)
Output
Input array: [[0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 4. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]] Hessian Matrix Elements: Hrr: [[ 0. 0. 2. 0. 0.] [ 0. 0. 0. 0. 0.] [ 0. 0. -2. 0. 0.] [ 0. 0. 0. 0. 0.] [ 0. 0. 2. 0. 0.]] Hrc: [[ 0. 0. 0. 0. 0.] [ 0. 1. 0. -1. 0.] [ 0. 0. 0. 0. 0.] [ 0. -1. 0. 1. 0.] [ 0. 0. 0. 0. 0.]] Hcc: [[ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.] [ 2. 0. -2. 0. 2.] [ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.]]
Using the skimage.feature.hessian_matrix_eigvals()
The function hessian_matrix_eigvals() is used to compute the eigenvalues of the Hessian matrix for an image.
Syntax
Following is the syntax of the function −
skimage.feature.hessian_matrix_eigvals(H_elems)
Parameters
Following are the details of the function parameters −
H_elems (list of ndarray): This parameter represents the upper-diagonal elements of the Hessian matrix, and it should be returned by the hessian_matrix function. These elements contain information about second-order derivatives in the image.
The output of this function is eigs (ndarray) representing the eigenvalues of the Hessian matrix. The eigenvalues are sorted in decreasing order. The leading dimension of the eigs array corresponds to the eigenvalues. That is, eigs[i, j, k] contains the i-th largest eigenvalue at position (j, k) in the image.
Example
The following example calculates the eigenvalues of the Hessian matrix for a 2D image using the hessian_matrix() and hessian_matrix_eigvals() functions.
from skimage.feature import hessian_matrix, hessian_matrix_eigvals import numpy as np # Create a 5x5 NumPy array to represent a 2D image filled with zeros square = np.zeros((5, 5)) # Assign a value 4 to the central pixel of the 'square' image square[2, 2] = 4 # print the input array print("Input array:") print(square) # Compute the Hessian matrix components for the 'square' image H_elems = hessian_matrix(square, sigma=0.1, order='rc', use_gaussian_derivatives=False) # Calculate the first eigenvalue of the Hessian matrix first_eigenvalue = hessian_matrix_eigvals(H_elems)[0] # print the first eigenvalue of the Hessian matrix print('First eigenvalue:') print(first_eigenvalue)
Output
Input array: [[0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 4. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]] First eigenvalue: [[ 0. 0. 2. 0. 0.] [ 0. 1. 0. 1. 0.] [ 2. 0. -2. 0. 2.] [ 0. 1. 0. 1. 0.] [ 0. 0. 2. 0. 0.]]