
- Scikit Image – Introduction
- Scikit Image - Image Processing
- Scikit Image - Numpy Images
- Scikit Image - Image datatypes
- Scikit Image - Using Plugins
- Scikit Image - Image Handlings
- Scikit Image - Reading Images
- Scikit Image - Writing Images
- Scikit Image - Displaying Images
- Scikit Image - Image Collections
- Scikit Image - Image Stack
- Scikit Image - Multi Image
- Scikit Image - Data Visualization
- Scikit Image - Using Matplotlib
- Scikit Image - Using Ploty
- Scikit Image - Using Mayavi
- Scikit Image - Using Napari
- Scikit Image - Color Manipulation
- Scikit Image - Alpha Channel
- Scikit Image - Conversion b/w Color & Gray Values
- Scikit Image - Conversion b/w RGB & HSV
- Scikit Image - Conversion to CIE-LAB Color Space
- Scikit Image - Conversion from CIE-LAB Color Space
- Scikit Image - Conversion to luv Color Space
- Scikit Image - Conversion from luv Color Space
- Scikit Image - Image Inversion
- Scikit Image - Painting Images with Labels
- Scikit Image - Contrast & Exposure
- Scikit Image - Contrast
- Scikit Image - Contrast enhancement
- Scikit Image - Exposure
- Scikit Image - Histogram Matching
- Scikit Image - Histogram Equalization
- Scikit Image - Local Histogram Equalization
- Scikit Image - Tinting gray-scale images
- Scikit Image - Image Transformation
- Scikit Image - Scaling an image
- Scikit Image - Rotating an Image
- Scikit Image - Warping an Image
- Scikit Image - Affine Transform
- Scikit Image - Piecewise Affine Transform
- Scikit Image - ProjectiveTransform
- Scikit Image - EuclideanTransform
- Scikit Image - Radon Transform
- Scikit Image - Line Hough Transform
- Scikit Image - Probabilistic Hough Transform
- Scikit Image - Circular Hough Transforms
- Scikit Image - Elliptical Hough Transforms
- Scikit Image - Polynomial Transform
- Scikit Image - Image Pyramids
- Scikit Image - Pyramid Gaussian Transform
- Scikit Image - Pyramid Laplacian Transform
- Scikit Image - Swirl Transform
- Scikit Image - Morphological Operations
- Scikit Image - Erosion
- Scikit Image - Dilation
- Scikit Image - Black & White Tophat Morphologies
- Scikit Image - Convex Hull
- Scikit Image - Generating footprints
- Scikit Image - Isotopic Dilation & Erosion
- Scikit Image - Isotopic Closing & Opening of an Image
- Scikit Image - Skelitonizing an Image
- Scikit Image - Morphological Thinning
- Scikit Image - Masking an image
- Scikit Image - Area Closing & Opening of an Image
- Scikit Image - Diameter Closing & Opening of an Image
- Scikit Image - Morphological reconstruction of an Image
- Scikit Image - Finding local Maxima
- Scikit Image - Finding local Minima
- Scikit Image - Removing Small Holes from an Image
- Scikit Image - Removing Small Objects from an Image
- Scikit Image - Filters
- Scikit Image - Image Filters
- Scikit Image - Median Filter
- Scikit Image - Mean Filters
- Scikit Image - Morphological gray-level Filters
- Scikit Image - Gabor Filter
- Scikit Image - Gaussian Filter
- Scikit Image - Butterworth Filter
- Scikit Image - Frangi Filter
- Scikit Image - Hessian Filter
- Scikit Image - Meijering Neuriteness Filter
- Scikit Image - Sato Filter
- Scikit Image - Sobel Filter
- Scikit Image - Farid Filter
- Scikit Image - Scharr Filter
- Scikit Image - Unsharp Mask Filter
- Scikit Image - Roberts Cross Operator
- Scikit Image - Lapalace Operator
- Scikit Image - Window Functions With Images
- Scikit Image - Thresholding
- Scikit Image - Applying Threshold
- Scikit Image - Otsu Thresholding
- Scikit Image - Local thresholding
- Scikit Image - Hysteresis Thresholding
- Scikit Image - Li thresholding
- Scikit Image - Multi-Otsu Thresholding
- Scikit Image - Niblack and Sauvola Thresholding
- Scikit Image - Restoring Images
- Scikit Image - Rolling-ball Algorithm
- Scikit Image - Denoising an Image
- Scikit Image - Wavelet Denoising
- Scikit Image - Non-local means denoising for preserving textures
- Scikit Image - Calibrating Denoisers Using J-Invariance
- Scikit Image - Total Variation Denoising
- Scikit Image - Shift-invariant wavelet denoising
- Scikit Image - Image Deconvolution
- Scikit Image - Richardson-Lucy Deconvolution
- Scikit Image - Recover the original from a wrapped phase image
- Scikit Image - Image Inpainting
- Scikit Image - Registering Images
- Scikit Image - Image Registration
- Scikit Image - Masked Normalized Cross-Correlation
- Scikit Image - Registration using optical flow
- Scikit Image - Assemble images with simple image stitching
- Scikit Image - Registration using Polar and Log-Polar
- Scikit Image - Feature Detection
- Scikit Image - Dense DAISY Feature Description
- Scikit Image - Histogram of Oriented Gradients
- Scikit Image - Template Matching
- Scikit Image - CENSURE Feature Detector
- Scikit Image - BRIEF Binary Descriptor
- Scikit Image - SIFT Feature Detector and Descriptor Extractor
- Scikit Image - GLCM Texture Features
- Scikit Image - Shape Index
- Scikit Image - Sliding Window Histogram
- Scikit Image - Finding Contour
- Scikit Image - Texture Classification Using Local Binary Pattern
- Scikit Image - Texture Classification Using Multi-Block Local Binary Pattern
- Scikit Image - Active Contour Model
- Scikit Image - Canny Edge Detection
- Scikit Image - Marching Cubes
- Scikit Image - Foerstner Corner Detection
- Scikit Image - Harris Corner Detection
- Scikit Image - Extracting FAST Corners
- Scikit Image - Shi-Tomasi Corner Detection
- Scikit Image - Haar Like Feature Detection
- Scikit Image - Haar Feature detection of coordinates
- Scikit Image - Hessian matrix
- Scikit Image - ORB feature Detection
- Scikit Image - Additional Concepts
- Scikit Image - Render text onto an image
- Scikit Image - Face detection using a cascade classifier
- Scikit Image - Face classification using Haar-like feature descriptor
- Scikit Image - Visual image comparison
- Scikit Image - Exploring Region Properties With Pandas
Scikit Image − Removing Small Objects from an Image
Removing small objects from an image refers to the process of identifying and eliminating relatively small objects (otherthan Zero’s) within an image that are often considered noise, or unwanted details. This is a common image-processing task used in various applications, such as image segmentation, object detection, and image analysis.
The scikit-image (skimage) library provides a remove_small_objects() function in the morphology module to identify and remove connected components or objects in a binary or labeled image based on the specified size.
Using the skimage.morphology.remove_small_objects() function.
The remove_small_objects() function is used to remove objects or connected components in a binary or labeled image that are smaller than a specified size.
Syntax
Following is the syntax of this function −
skimage.morphology.remove_small_objects(ar, min_size=64, connectivity=1, *, out=None)
Parameters
The function accepts the following parameters:
- ar (ndarray): This parameter expects an array, which can be of arbitrary shape and should typically be of integer or boolean type. It is the input image containing the connected components of interest. If the array contains integers then ints must be non-negative.
- min_size (int, optional, default: 64): It specifies the smallest allowable object size, in pixels.
- connectivity (int, optional, default: 1): This parameter defines the connectivity of the neighborhood of a pixel and is used during the labeling process when ar is a boolean array.
- out (ndarray, optional): It specifies an ndarray of the same shape as ar where the output will be placed. By default, a new ndarray is created to store the output.
Return value
The function returns an output array of the same shape and data type as the input ar. This output array will have small connected components (objects) removed if they are smaller than the specified min_size.
The function may raise a TypeError if the input array is of an invalid type (e.g., float or string) and a ValueError if the input array contains negative values.
Example 1
The following example removes objects smaller than 2 pixels using the morphology.remove_small_objects() function −
import numpy as np from skimage import morphology import matplotlib.pyplot as plt # Input array arr = np.array([ [1, 1, 1, 0, 0], [1, 0, 1, 0, 0], [1, 1, 1, 0, 0], [0, 0, 0, 0, 2]]) # Print the input array print("Input array:") print(arr) # Remove objects smaller than 2 pixels result = morphology.remove_small_objects(arr, 2) # Print the result print("\nResult after removing small objects:") print(result)
Output
Input array: [[1 1 1 0 0] [1 0 1 0 0] [1 1 1 0 0] [0 0 0 0 2]] Result after removing small objects: [[1 1 1 0 0] [1 0 1 0 0] [1 1 1 0 0] [0 0 0 0 0]]
Example 2
import numpy as np from skimage import morphology, segmentation, io import matplotlib.pyplot as plt # Load an input image image = np.array([[1, 1, 1, 0, 0, 0], [1, 0, 1, 0, 1, 0], [1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0]], bool) # Remove objects smaller than 2 pixels result = morphology.remove_small_objects(image, 2) # Visualize the input and result using matplotlib fig, axes = plt.subplots(1, 2, figsize=(10, 5)) ax = axes.ravel() # Display the input array ax[0].imshow(image) ax[0].set_title('Input image') ax[0].axis('off') # Display the result ax[1].imshow(result) ax[1].set_title('Result After Removing Small Objects') ax[1].axis('off') plt.tight_layout() plt.show()
Output
