
- Scikit Image – Introduction
- Scikit Image - Image Processing
- Scikit Image - Numpy Images
- Scikit Image - Image datatypes
- Scikit Image - Using Plugins
- Scikit Image - Image Handlings
- Scikit Image - Reading Images
- Scikit Image - Writing Images
- Scikit Image - Displaying Images
- Scikit Image - Image Collections
- Scikit Image - Image Stack
- Scikit Image - Multi Image
- Scikit Image - Data Visualization
- Scikit Image - Using Matplotlib
- Scikit Image - Using Ploty
- Scikit Image - Using Mayavi
- Scikit Image - Using Napari
- Scikit Image - Color Manipulation
- Scikit Image - Alpha Channel
- Scikit Image - Conversion b/w Color & Gray Values
- Scikit Image - Conversion b/w RGB & HSV
- Scikit Image - Conversion to CIE-LAB Color Space
- Scikit Image - Conversion from CIE-LAB Color Space
- Scikit Image - Conversion to luv Color Space
- Scikit Image - Conversion from luv Color Space
- Scikit Image - Image Inversion
- Scikit Image - Painting Images with Labels
- Scikit Image - Contrast & Exposure
- Scikit Image - Contrast
- Scikit Image - Contrast enhancement
- Scikit Image - Exposure
- Scikit Image - Histogram Matching
- Scikit Image - Histogram Equalization
- Scikit Image - Local Histogram Equalization
- Scikit Image - Tinting gray-scale images
- Scikit Image - Image Transformation
- Scikit Image - Scaling an image
- Scikit Image - Rotating an Image
- Scikit Image - Warping an Image
- Scikit Image - Affine Transform
- Scikit Image - Piecewise Affine Transform
- Scikit Image - ProjectiveTransform
- Scikit Image - EuclideanTransform
- Scikit Image - Radon Transform
- Scikit Image - Line Hough Transform
- Scikit Image - Probabilistic Hough Transform
- Scikit Image - Circular Hough Transforms
- Scikit Image - Elliptical Hough Transforms
- Scikit Image - Polynomial Transform
- Scikit Image - Image Pyramids
- Scikit Image - Pyramid Gaussian Transform
- Scikit Image - Pyramid Laplacian Transform
- Scikit Image - Swirl Transform
- Scikit Image - Morphological Operations
- Scikit Image - Erosion
- Scikit Image - Dilation
- Scikit Image - Black & White Tophat Morphologies
- Scikit Image - Convex Hull
- Scikit Image - Generating footprints
- Scikit Image - Isotopic Dilation & Erosion
- Scikit Image - Isotopic Closing & Opening of an Image
- Scikit Image - Skelitonizing an Image
- Scikit Image - Morphological Thinning
- Scikit Image - Masking an image
- Scikit Image - Area Closing & Opening of an Image
- Scikit Image - Diameter Closing & Opening of an Image
- Scikit Image - Morphological reconstruction of an Image
- Scikit Image - Finding local Maxima
- Scikit Image - Finding local Minima
- Scikit Image - Removing Small Holes from an Image
- Scikit Image - Removing Small Objects from an Image
- Scikit Image - Filters
- Scikit Image - Image Filters
- Scikit Image - Median Filter
- Scikit Image - Mean Filters
- Scikit Image - Morphological gray-level Filters
- Scikit Image - Gabor Filter
- Scikit Image - Gaussian Filter
- Scikit Image - Butterworth Filter
- Scikit Image - Frangi Filter
- Scikit Image - Hessian Filter
- Scikit Image - Meijering Neuriteness Filter
- Scikit Image - Sato Filter
- Scikit Image - Sobel Filter
- Scikit Image - Farid Filter
- Scikit Image - Scharr Filter
- Scikit Image - Unsharp Mask Filter
- Scikit Image - Roberts Cross Operator
- Scikit Image - Lapalace Operator
- Scikit Image - Window Functions With Images
- Scikit Image - Thresholding
- Scikit Image - Applying Threshold
- Scikit Image - Otsu Thresholding
- Scikit Image - Local thresholding
- Scikit Image - Hysteresis Thresholding
- Scikit Image - Li thresholding
- Scikit Image - Multi-Otsu Thresholding
- Scikit Image - Niblack and Sauvola Thresholding
- Scikit Image - Restoring Images
- Scikit Image - Rolling-ball Algorithm
- Scikit Image - Denoising an Image
- Scikit Image - Wavelet Denoising
- Scikit Image - Non-local means denoising for preserving textures
- Scikit Image - Calibrating Denoisers Using J-Invariance
- Scikit Image - Total Variation Denoising
- Scikit Image - Shift-invariant wavelet denoising
- Scikit Image - Image Deconvolution
- Scikit Image - Richardson-Lucy Deconvolution
- Scikit Image - Recover the original from a wrapped phase image
- Scikit Image - Image Inpainting
- Scikit Image - Registering Images
- Scikit Image - Image Registration
- Scikit Image - Masked Normalized Cross-Correlation
- Scikit Image - Registration using optical flow
- Scikit Image - Assemble images with simple image stitching
- Scikit Image - Registration using Polar and Log-Polar
- Scikit Image - Feature Detection
- Scikit Image - Dense DAISY Feature Description
- Scikit Image - Histogram of Oriented Gradients
- Scikit Image - Template Matching
- Scikit Image - CENSURE Feature Detector
- Scikit Image - BRIEF Binary Descriptor
- Scikit Image - SIFT Feature Detector and Descriptor Extractor
- Scikit Image - GLCM Texture Features
- Scikit Image - Shape Index
- Scikit Image - Sliding Window Histogram
- Scikit Image - Finding Contour
- Scikit Image - Texture Classification Using Local Binary Pattern
- Scikit Image - Texture Classification Using Multi-Block Local Binary Pattern
- Scikit Image - Active Contour Model
- Scikit Image - Canny Edge Detection
- Scikit Image - Marching Cubes
- Scikit Image - Foerstner Corner Detection
- Scikit Image - Harris Corner Detection
- Scikit Image - Extracting FAST Corners
- Scikit Image - Shi-Tomasi Corner Detection
- Scikit Image - Haar Like Feature Detection
- Scikit Image - Haar Feature detection of coordinates
- Scikit Image - Hessian matrix
- Scikit Image - ORB feature Detection
- Scikit Image - Additional Concepts
- Scikit Image - Render text onto an image
- Scikit Image - Face detection using a cascade classifier
- Scikit Image - Face classification using Haar-like feature descriptor
- Scikit Image - Visual image comparison
- Scikit Image - Exploring Region Properties With Pandas
Scikit Image − Removing Small Holes from an Image
Removing Small Holes from an Image" is a common image processing operation that is used to eliminate small holes (represented by value 0) within objects (represented by any other single value, typically 1) in binary images or segmentation masks. This process involves filling or removing small holes within objects. It improves the quality of the image and makes it suitable for further analysis or visualization.
Scikit-image (skimage) has a remove_small_holes() function in the morphology module that identifies and either fills or removes small holes within objects based on specified size.
Using the skimage.morphology.remove_small_holes() function
The remove_small_holes() function is used to remove small contiguous holes within connected components in a binary image.
Syntax
Following is the syntax of this function −
skimage.morphology.remove_small_holes(ar, area_threshold=64, connectivity=1, *, out=None)
Parameters
The function accepts the following parameters −
- ar (ndarray): This parameter expects an array, which can be of arbitrary shape and should typically be of integer or boolean type. It is the input image containing the connected components of interest.
- area_threshold (int, optional, default: 64): This parameter specifies the maximum area, in pixels, that a contiguous hole can have and still be removed. If a hole is smaller than this threshold, it will be filled.
- connectivity (int, optional, default: 1): This parameter defines the connectivity of the neighborhood of a pixel.
- out (ndarray, optional): An optional parameter that specifies an ndarray of the same shape as ar and bool data type where the output will be placed. By default, if not provided, an out parameter, a new ndarray is created to store the output.
Return value
The function returns an ndarray of the same shape and type as the input ar. This array will have small holes within connected components removed.
It's important to note that if the input array is of type int, it is assumed that it contains already-labeled objects. However, the labels are not preserved in the output image; the function always outputs a binary (bool) image. If you need to preserve labels, it is suggested that you perform labeling after using this function.
Additionally, the function may raise a TypeError if the input array is of an invalid type (e.g., float or string), and a ValueError if the input array contains negative values, as this function expects only a binary image with 0s and 1s.
Example 1
The following example demonstrates how to remove small holes from an input array using scikit-image morphology.remove_small_holes() function −
import numpy as np from skimage import morphology, segmentation # Input array arr = np.array([ [1, 1, 1, 0, 0], [1, 0, 1, 0, 0], [1, 1, 1, 0, 0], [0, 0, 0, 0, 2], ]) print('Input array:') print(arr) # Convert the object image to binary/boolean binary_array = arr.astype(bool) # Remove small holes (holes with area < 2) from the binary image filled_arr = morphology.remove_small_holes(binary_array, 2) # Use watershed to get objects back, preserving their original IDs result_arr = segmentation.watershed(filled_arr, arr, mask= filled_arr) # Print the result print('Array after removing the holes:') print(result_arr)
Output
Input array: [[1 1 1 0 0] [1 0 1 0 0] [1 1 1 0 0] [0 0 0 0 2]] Array after removing the holes: [[1 1 1 0 0] [1 1 1 0 0] [1 1 1 0 0] [0 0 0 0 2]]
Example 2
import numpy as np from skimage import morphology, segmentation, io import matplotlib.pyplot as plt # Load an input image image = np.array([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 1, 1, 0], [1, 0, 0, 1, 1, 0], [1, 1, 1, 1, 1, 0]], bool) # Convert the object image to binary/boolean binary_image = image.astype(bool) # Remove small holes (holes with area < 2) from the binary image filled_image = morphology.remove_small_holes(binary_image, 4) # Use watershed to get objects back, preserving their original IDs result_image = segmentation.watershed(filled_image, image, mask=filled_image) # Create subplots for displaying the input and output images fig, axes = plt.subplots(1, 2, figsize=(10, 5)) ax = axes.ravel() # Display the input image ax[0].imshow(image) ax[0].axis('off') ax[0].set_title('Input Image') # Display the resultant image ax[1].imshow(result_image) ax[1].axis('off') ax[1].set_title('resultant image after removing the holes') plt.tight_layout() plt.show()
Output
