
- Scikit Image – Introduction
- Scikit Image - Image Processing
- Scikit Image - Numpy Images
- Scikit Image - Image datatypes
- Scikit Image - Using Plugins
- Scikit Image - Image Handlings
- Scikit Image - Reading Images
- Scikit Image - Writing Images
- Scikit Image - Displaying Images
- Scikit Image - Image Collections
- Scikit Image - Image Stack
- Scikit Image - Multi Image
- Scikit Image - Data Visualization
- Scikit Image - Using Matplotlib
- Scikit Image - Using Ploty
- Scikit Image - Using Mayavi
- Scikit Image - Using Napari
- Scikit Image - Color Manipulation
- Scikit Image - Alpha Channel
- Scikit Image - Conversion b/w Color & Gray Values
- Scikit Image - Conversion b/w RGB & HSV
- Scikit Image - Conversion to CIE-LAB Color Space
- Scikit Image - Conversion from CIE-LAB Color Space
- Scikit Image - Conversion to luv Color Space
- Scikit Image - Conversion from luv Color Space
- Scikit Image - Image Inversion
- Scikit Image - Painting Images with Labels
- Scikit Image - Contrast & Exposure
- Scikit Image - Contrast
- Scikit Image - Contrast enhancement
- Scikit Image - Exposure
- Scikit Image - Histogram Matching
- Scikit Image - Histogram Equalization
- Scikit Image - Local Histogram Equalization
- Scikit Image - Tinting gray-scale images
- Scikit Image - Image Transformation
- Scikit Image - Scaling an image
- Scikit Image - Rotating an Image
- Scikit Image - Warping an Image
- Scikit Image - Affine Transform
- Scikit Image - Piecewise Affine Transform
- Scikit Image - ProjectiveTransform
- Scikit Image - EuclideanTransform
- Scikit Image - Radon Transform
- Scikit Image - Line Hough Transform
- Scikit Image - Probabilistic Hough Transform
- Scikit Image - Circular Hough Transforms
- Scikit Image - Elliptical Hough Transforms
- Scikit Image - Polynomial Transform
- Scikit Image - Image Pyramids
- Scikit Image - Pyramid Gaussian Transform
- Scikit Image - Pyramid Laplacian Transform
- Scikit Image - Swirl Transform
- Scikit Image - Morphological Operations
- Scikit Image - Erosion
- Scikit Image - Dilation
- Scikit Image - Black & White Tophat Morphologies
- Scikit Image - Convex Hull
- Scikit Image - Generating footprints
- Scikit Image - Isotopic Dilation & Erosion
- Scikit Image - Isotopic Closing & Opening of an Image
- Scikit Image - Skelitonizing an Image
- Scikit Image - Morphological Thinning
- Scikit Image - Masking an image
- Scikit Image - Area Closing & Opening of an Image
- Scikit Image - Diameter Closing & Opening of an Image
- Scikit Image - Morphological reconstruction of an Image
- Scikit Image - Finding local Maxima
- Scikit Image - Finding local Minima
- Scikit Image - Removing Small Holes from an Image
- Scikit Image - Removing Small Objects from an Image
- Scikit Image - Filters
- Scikit Image - Image Filters
- Scikit Image - Median Filter
- Scikit Image - Mean Filters
- Scikit Image - Morphological gray-level Filters
- Scikit Image - Gabor Filter
- Scikit Image - Gaussian Filter
- Scikit Image - Butterworth Filter
- Scikit Image - Frangi Filter
- Scikit Image - Hessian Filter
- Scikit Image - Meijering Neuriteness Filter
- Scikit Image - Sato Filter
- Scikit Image - Sobel Filter
- Scikit Image - Farid Filter
- Scikit Image - Scharr Filter
- Scikit Image - Unsharp Mask Filter
- Scikit Image - Roberts Cross Operator
- Scikit Image - Lapalace Operator
- Scikit Image - Window Functions With Images
- Scikit Image - Thresholding
- Scikit Image - Applying Threshold
- Scikit Image - Otsu Thresholding
- Scikit Image - Local thresholding
- Scikit Image - Hysteresis Thresholding
- Scikit Image - Li thresholding
- Scikit Image - Multi-Otsu Thresholding
- Scikit Image - Niblack and Sauvola Thresholding
- Scikit Image - Restoring Images
- Scikit Image - Rolling-ball Algorithm
- Scikit Image - Denoising an Image
- Scikit Image - Wavelet Denoising
- Scikit Image - Non-local means denoising for preserving textures
- Scikit Image - Calibrating Denoisers Using J-Invariance
- Scikit Image - Total Variation Denoising
- Scikit Image - Shift-invariant wavelet denoising
- Scikit Image - Image Deconvolution
- Scikit Image - Richardson-Lucy Deconvolution
- Scikit Image - Recover the original from a wrapped phase image
- Scikit Image - Image Inpainting
- Scikit Image - Registering Images
- Scikit Image - Image Registration
- Scikit Image - Masked Normalized Cross-Correlation
- Scikit Image - Registration using optical flow
- Scikit Image - Assemble images with simple image stitching
- Scikit Image - Registration using Polar and Log-Polar
- Scikit Image - Feature Detection
- Scikit Image - Dense DAISY Feature Description
- Scikit Image - Histogram of Oriented Gradients
- Scikit Image - Template Matching
- Scikit Image - CENSURE Feature Detector
- Scikit Image - BRIEF Binary Descriptor
- Scikit Image - SIFT Feature Detector and Descriptor Extractor
- Scikit Image - GLCM Texture Features
- Scikit Image - Shape Index
- Scikit Image - Sliding Window Histogram
- Scikit Image - Finding Contour
- Scikit Image - Texture Classification Using Local Binary Pattern
- Scikit Image - Texture Classification Using Multi-Block Local Binary Pattern
- Scikit Image - Active Contour Model
- Scikit Image - Canny Edge Detection
- Scikit Image - Marching Cubes
- Scikit Image - Foerstner Corner Detection
- Scikit Image - Harris Corner Detection
- Scikit Image - Extracting FAST Corners
- Scikit Image - Shi-Tomasi Corner Detection
- Scikit Image - Haar Like Feature Detection
- Scikit Image - Haar Feature detection of coordinates
- Scikit Image - Hessian matrix
- Scikit Image - ORB feature Detection
- Scikit Image - Additional Concepts
- Scikit Image - Render text onto an image
- Scikit Image - Face detection using a cascade classifier
- Scikit Image - Face classification using Haar-like feature descriptor
- Scikit Image - Visual image comparison
- Scikit Image - Exploring Region Properties With Pandas
Scikit Image - Applying Threshold
Thresholding is a fundamental image processing technique used to create a binary image from a grayscale image, where each pixel is classified as either part of the foreground or the background. It is the simplest method of segmenting objects from an image background.
In scikit-image, there are two main categories of thresholding algorithms:
- Histogram-based Thresholding: These algorithms work based on the histogram of pixel intensities in the image. They often make certain assumptions about the properties of this histogram (e.g. bimodal - having two distinct peaks).
- Local Thresholding: Local thresholding algorithms consider the neighboring pixels of each pixel in order to determine its classification. These methods often require more computational time because they analyze the surrounding pixels.
Applying Threshold
Applying thresholding involves setting a specific value (threshold) to distinguish between two categories of pixels in an image. In this context, we use the mean value of pixel intensities as a threshold. This method is a relatively straightforward and naive threshold value for separating pixels into two groups.
Example
Here's an example that demonstrates how to apply a simple thresholding algorithm using the mean value of pixel intensities to create a binary image −
import matplotlib.pyplot as plt from skimage.filters import threshold_mean from skimage import io # Load an image image = io.imread('Images/image5.jpg', as_gray=True) # Calculate the mean threshold value thresh = threshold_mean(image) # Create a binary image based on the calculated threshold binary = image > thresh # Create subplots for the original and thresholded images fig, axes = plt.subplots(ncols=2, figsize=(10, 5)) ax = axes.ravel() # Display the original image ax[0].imshow(image, cmap=plt.cm.gray) ax[0].set_title('Original image') # Display the result of thresholding ax[1].imshow(binary, cmap=plt.cm.gray) ax[1].set_title('Thresholding Result') for a in ax: a.axis('off') plt.show()
Output

Choosing the right thresholding algorithm for specific data can be challenging, especially if you're not familiar with the details of the different algorithms. therefore, scikit-image provides a function try_all_threshold() within its filter module to evaluate various thresholding algorithms available in the library. This function helps you choose the best-suited algorithm for your specific image data without needing an in-depth understanding of how each algorithm works.
Using the try_all_threshold() function
The filters.try_all_threshold() function is used to generate a figure that provides visual comparisons of the outputs of different thresholding methods applied to an input image −
Syntax
Following is the syntax of this function −
skimage.filters.try_all_threshold(image, figsize=(8, 5), verbose=True)
Parameters
Here are the details of the parameters −
- image (N, M) ndarray: This is the input image on which you want to compare different thresholding methods.
- figsize (tuple, optional): This parameter specifies the size of the resulting Matplotlib figure in inches.
- verbose (bool, optional): If set to True, this parameter will print the name of each thresholding method being applied.
Return value
The function returns a tuple containing a Matplotlib figure (fig) and a set of axes (ax) for the generated comparison figure.
Example
Here is an example of how to use the filters.try_all_threshold() function to compare different thresholding methods on an image −
import matplotlib.pyplot as plt from skimage import io, filters # Load an example image image = io.imread('Images/Tajmahal_2.jpg', as_gray=True) # Generate the comparison figure for all thresholding methods fig, ax = filters.try_all_threshold(image, figsize=(12, 15), verbose=True) # Display the figure with comparisons plt.show()
Output
